【題目】為增進市民的環(huán)保意識,某市有關部門面向全體市民進行了一次環(huán)保知識的微信問卷測試活動,每位市民僅有一次參與問卷測試機會.通過抽樣,得到參與問卷測試的1000人的得分數據,制成頻率分布直方圖如圖所示.
(1)估計成績得分落在[86,100]中的概率.
(2)設這1000人得分的樣本平均值為.
(i)求(同一組數據用該區(qū)間的中點值作代表);
(ii)有關部門為參與此次活動的市民贈送20元或10元的隨機話費,每次獲贈20元或10元的隨機話費的概率分別為和.得分不低于的可獲贈2次隨機話費,得分低于的可獲贈1次隨機話費.求一位市民參與這次活動獲贈話費的平均估計值.
科目:高中數學 來源: 題型:
【題目】(1)某食品的保鮮時間y(單位:小時)與儲藏溫度x(單位:℃)滿足函數關系自然對數的底數,k,b為常數),若該食品在0℃的保鮮時間是192小時,在22℃的保鮮時間是48小時,求該食品在33℃的保鮮時間.
(2)某藥廠生產一種口服液,按藥品標準要求其雜質含量不能超過0.01%,若初始時含雜質0.2%,每次過濾可使雜質含量減少三分之一,問至少應過濾幾次才能使得這種液體達到要求?(已知,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校有、、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結果揭曉前,甲、乙、丙、丁四位同學對這四件參賽作品的獲獎情況預測如下.
甲說:“、同時獲獎.”
乙說:“、不可能同時獲獎.”
丙說:“獲獎.”
丁說:“、至少一件獲獎”
如果以上四位同學中有且只有兩位同學的預測是正確的,則獲獎的作品是( )
A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ln(ax2+x+6).
(1)若a=﹣1,求f(x)的定義域,并討論f(x)的單調性;
(2)若函數f(x)的定義域為R,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為4,動點E,F在棱上,動點P,Q分別在棱AD,CD上。若,,,(大于零),則四面體PEFQ的體積
A.與都有關B.與m有關,與無關
C.與p有關,與無關D.與π有關,與無關
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,g(x)=f(x)﹣3.
(1)判斷并證明函數g(x)的奇偶性;
(2)判斷并證明函數g(x)在(1,+∞)上的單調性;
(3)若f(m2﹣2m+7)≥f(2m2﹣4m+4)成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com