設(shè)函數(shù)f(θ)=sinθ+cosθ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為,求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω:,上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.

(1)2;(2)0≤θ≤; f(θ)的最大值等于2 ,f(θ)最小值等于1.

解析試題分析:(1)由任意角三角函數(shù)的定義可得sinθ,cosθ,代入函數(shù)f(θ)=sinθ+cosθ,從而求出f(θ)的值.
(2)作出平面區(qū)域Ω(即三角區(qū)域ABC),如圖所示,其點(diǎn)P在該平面區(qū)域內(nèi),連結(jié)OP,便可得角θ的范圍.將f(θ)化一得: f(θ)=sinθ+cosθ=2sin(θ+).根據(jù)角θ的范圍,結(jié)合正弦函數(shù)的圖象的性質(zhì),便 可得f(θ)的范圍.
試題解析:(1)由點(diǎn)P的坐標(biāo)和三角函數(shù)的定義可得sinθ=,cosθ=.
于是f(θ)=sinθ+cos θ==2.
(2)作出平面區(qū)域Ω(即三角區(qū)域ABC)如圖所示,其中A(1,0),B(1,1),C(0,1).

由圖可得:0≤θ≤.
又f(θ)=sinθ+cosθ=2sin(θ+),且≤θ+
故當(dāng)θ+,即θ=時(shí),f(θ)取得最大值,且最大值等于2 ;
當(dāng)θ+,即θ=0時(shí),f(θ)取得最小值,且最小值等于1.
考點(diǎn):1、任意角三角函數(shù)的定義;2、二元不等式組表示的平面區(qū)域;3、三角函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,且.
(1)求;
(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的最大值為2.

(1)求的值及的最小正周期;
(2)在坐標(biāo)紙上做出上的圖像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,其中,若函數(shù),且函數(shù)的圖象與直線相鄰兩公共點(diǎn)間的距離為.
(1)求的值;
(2)在中.分別是的對(duì)邊,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求的最小正周期;
(2)在中,分別是A、B、C的對(duì)邊,若,,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的圖象關(guān)于直線對(duì)稱,其中
(1)求的解析式;
(2)將的圖象向左平移個(gè)單位,再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到的圖象;若函數(shù)的圖象與的圖象有三個(gè)交點(diǎn)且交點(diǎn)的橫坐標(biāo)成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),將函數(shù)在區(qū)間內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在⊿ABC中,角A,B,C的對(duì)邊分別為A,b,C,且滿足(2A-C)CosB=bCosC.
(Ⅰ)求角B的大小;
(Ⅱ)已知函數(shù)f(A,C)=Cos2A+sin2C,求f(A,C)的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若方程上有解,求的取值范圍;
(Ⅱ)在中,分別是A,B,C所對(duì)的邊,若,且,,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案