18.計算:
cos$\frac{4}{3}π$-tan$\frac{π}{4}$+$\frac{1}{3}$tan2$\frac{π}{3}$-sin$\frac{3π}{2}$+cosπ

分析 直接利用誘導(dǎo)公式以及特殊角的三角函數(shù)求解即可.

解答 解:cos$\frac{4}{3}π$-tan$\frac{π}{4}$+$\frac{1}{3}$tan2$\frac{π}{3}$-sin$\frac{3π}{2}$+cosπ
=-cos$\frac{π}{3}$-1+$\frac{1}{3}$×3+1-1
=-$\frac{1}{2}$.

點(diǎn)評 本題考查誘導(dǎo)公式以及特殊角的三角函數(shù)求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.θ是第二象限角,則下列選項中一定為正值的是( 。
A.sin$\frac{θ}{2}$B.cos$\frac{θ}{2}$C.tan$\frac{θ}{2}$D.cos2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=ex+elnx-2ax在x∈(1,3)上單調(diào)遞增,則實數(shù)a的取值范圍為(  )
A.(-∞,$\frac{{e}^{3}}{2}$+$\frac{e}{6}$)B.[($\frac{{e}^{3}}{2}$+$\frac{e}{6}$,+∞)C.(-∞,e)D.(-∞,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知單位圓與角α的終邊的交點(diǎn)為(sin$\frac{4π}{7}$,cos$\frac{4π}{7}$),則α可能為(  )
A.$\frac{4π}{7}$B.$\frac{π}{14}$C.$\frac{15π}{14}$D.$\frac{27π}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=xsinx的部分圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=2cosx(sinx-cosx),求函數(shù)的值域和最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)點(diǎn)P(x,y)是曲線a|x|+b|y|=1(a>0,b>0)上的動點(diǎn),且滿足$\sqrt{{x}^{2}+{y}^{2}+2y+1}$+$\sqrt{{x}^{2}+{y}^{2}-2y+1}$≤2$\sqrt{2}$,則a+$\sqrt{2}$b的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=1+cos2x的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,設(shè)計一個四棱錐形冷水塔塔頂,四棱錐的底面是正方形,側(cè)面是全等的等腰三角形,已知底面邊長為2m,高為$\sqrt{7}$m,求證:
(1)制造這個塔頂需要多少鐵板;       
(2)求該鐵塔的體積.

查看答案和解析>>

同步練習(xí)冊答案