分析 (1)利用f′(1)=0,求出a,即可求f(x)的解析式;
(2)求出切線的斜率,切點坐標(biāo),即可求y=f(x)在(e,f(e))處的切線.
解答 解:(1)∵f(x)=(x+a)lnx,
∴f′(x)=lnx+$\frac{x+a}{x}$,
∵f′(1)=0,
∴1+a=0,
∴a=-1,
∴f(x)=(x-1)lnx;
(2)f′(e)=lne+$\frac{e-1}{e}$=$\frac{2e-1}{e}$,f(e)=e-1,
∴y=f(x)在(e,f(e))處的切線為y-e+1=$\frac{2e-1}{e}$(x-e),即$y=\frac{2e-1}{e}x-e$.
點評 本題考查導(dǎo)數(shù)知識的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 22 | C. | 24 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-e) | B. | (-∞,-e] | C. | (-e,0) | D. | [-e,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{1}{2})$ | B. | (-∞,-1) | C. | ($\frac{1}{2}$,+∞) | D. | (-∞,-1)∪(2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com