3.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{3x+y-8≤0}\\{x+2y-1≥0}\\{2x-y-2≥0}\end{array}\right.$,則x2+y2的最大值為(  )
A.8B.10C.2$\sqrt{2}$D.$\sqrt{10}$

分析 作出平面區(qū)域,則x2+y2表示平面區(qū)域內(nèi)的點(diǎn)到原點(diǎn)的最大距離的平方.

解答 解:作出平面區(qū)域如圖:
解方程組$\left\{\begin{array}{l}{2x-y-2=0}\\{3x+y-8=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,∴A(2,2).∴|OA|2=22+22=8.
解方程組$\left\{\begin{array}{l}{x+2y-1=0}\\{3x+y-8=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$,∴B(3,-1).∴|OB|2=32+(-1)2=10.
∴平面區(qū)域內(nèi)的B點(diǎn)到原點(diǎn)得距離最大.
∴x2+y2的最大值是10.
故選:B.

點(diǎn)評 本題考查了簡單的線性規(guī)劃,弄清x2+y2的幾何意義是解題關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=${2}^{-{x}^{2}-x+2}$(x∈R),對于任意x恒有f(x)≤f(x0)成立,則x0=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知邊長為1的正方形ABCD中,以A為始點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量記為$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,以C為始點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量記為$\overrightarrow{_{1}}$,$\overrightarrow{_{2}}$,$\overrightarrow{_{3}}$,若i≠j,m≠n(i,j,m,n∈{1,2,3}),則($\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$)•($\overrightarrow{_{m}}$+$\overrightarrow{_{n}}$)的最小值為( 。
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不間斷曲線,且f(a)•f(b)<0,取x=x0,若f(a)•f(x0)<0,則利用二分法求方程根時取有根區(qū)間為(a,x0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.己知當(dāng)且僅當(dāng)a∈(m,n)時,$\frac{2-ax+{x}^{2}}{1-x+{x}^{2}}$<3對x∈R恒成立,則m+n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,|$\overrightarrow{c}$|=4,求$\overrightarrow{a}$與$\overrightarrow$的余弦值以及|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.畫y=$\frac{3x-1}{x+2}$,通過圖象,說出它的單調(diào)區(qū)間、對稱中心、對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<β<$\frac{π}{4}$<α<$\frac{3π}{4}$,cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a>0,b>0,且$\frac{1}{a}+\frac{1}=1$,則a+4b的最小值為( 。
A.4B.9C.10D.12

查看答案和解析>>

同步練習(xí)冊答案