【題目】某服裝批發(fā)市場(chǎng)1-5月份的服裝銷售量與利潤(rùn)的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷售量 (萬件)

3

6

4

7

8

利潤(rùn) (萬元)

19

34

26

41

46

1)從這五個(gè)月的利潤(rùn)中任選2個(gè)分別記為, ,求事件, 均不小于30”的概率

2)已知銷售量與利潤(rùn)大致滿足線性相關(guān)關(guān)系,請(qǐng)根據(jù)前4個(gè)月的數(shù)據(jù),求出關(guān)于的線性回歸方程;

3)若由線性回歸方程得到的利潤(rùn)的估計(jì)數(shù)據(jù)與真實(shí)數(shù)據(jù)的誤差不超過2萬元,則認(rèn)為得到的利潤(rùn)的估計(jì)數(shù)據(jù)是理想的請(qǐng)用表格中第5個(gè)月的數(shù)據(jù)檢驗(yàn)由(2)中回歸方程所得的第5個(gè)月的利潤(rùn)的估計(jì)數(shù)據(jù)是否理想參考公式:

【答案】1;(2;(3)見解析

【解析】試題分析:(1)列出基本事件,和事件A所包含的基本事件,由古典概型可求。(2)由公式依次算出。(3)由(2)得線性回歸方程為,代入進(jìn)行誤差分析。

試題解析:(1)所有的基本事件為(19,34), (19,26), (19,41),(19,46),(34,26) ,(34,41) ,(34,46),

(26,41),(26,46),(41,46)10個(gè).記“m,n均不小于30”為事件A,則事件A包含的基本事件為(34,41) ,(34,46), (41,46),共3個(gè).所以.

(2)由前4個(gè)月的數(shù)據(jù)可得, .

所以 ,

,所以線性回歸方程為

(3)由題意得,當(dāng)時(shí), , ; 所以利用(2)中的回歸

方程所得的第5個(gè)月的利潤(rùn)估計(jì)數(shù)據(jù)是理想的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+ )= .圓O的參數(shù)方程為 (θ為參數(shù),r>0).
(Ⅰ)求圓O的圓心的極坐標(biāo)(ρ≥0,0≤θ<2π );
(Ⅱ)當(dāng)r為何值時(shí),圓O上的點(diǎn)到直線l的最大距離為2+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+3x2+1,若至少存在兩個(gè)實(shí)數(shù)m,使得f(﹣m),f(1)、f(m+2)成等差數(shù)列,則過坐標(biāo)原點(diǎn)作曲線y=f(x)的切線可以作(
A.3條
B.2條
C.1條
D.0條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(1)若 ,求x的值;
(2)記f(x)= ,求f(x)的最大值和最小值以及對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量問題,全民關(guān)注,有需求就有研究,某科研團(tuán)隊(duì)根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過測(cè)試得到霧炮降塵率的頻率分布直方圖:
若降塵率達(dá)到18%以上,則認(rèn)定霧炮除塵有效.

(1)根據(jù)以上數(shù)據(jù)估計(jì)霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個(gè)區(qū)域,每個(gè)區(qū)域投放3臺(tái)霧炮進(jìn)行除塵(霧炮之間工作互不影響),若在一個(gè)區(qū)域內(nèi)的3臺(tái)霧炮降塵率都低于18%,則需對(duì)該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理,求后期投入費(fèi)用的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知 ,sinB=cosAsinC,S△ABC=6,P為線段AB上的點(diǎn),且 ,則xy的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn= ,求證:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)左、右焦點(diǎn)分別為F1 , F2 , A(2,0)是橢圓的右頂點(diǎn),過F2且垂直于x軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3;
(1)求橢圓的方程;
(2)若直線l與橢圓交于兩點(diǎn)M,N(M,N不同于點(diǎn)A),若 =0, = ;
①求證:直線l過定點(diǎn);并求出定點(diǎn)坐標(biāo);
②求直線AT的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案