20.如圖,在AB為直徑的半圓O上取一點(diǎn)C,連接AC并延長與過B點(diǎn)的切線相交于點(diǎn)D,以C為切點(diǎn)作切線交AB的延長線于G,交BD于F.
(1)求證:DF=BF;
(2)若AC=CG,求$\frac{AG}{CG}$的值.

分析 (1)連接BC,運(yùn)用圓的切線長定理和直徑所對(duì)的圓周角為直角,即可得到DF=BF;
(2)連接OF,由OF為△ABD的中位線,運(yùn)用中位線定理和平行線的性質(zhì),可得B為OG的中點(diǎn),設(shè)圓的半徑為r,可得BG=r,AG=3r,由切割線定理可得CG的長,進(jìn)而得到所求比值.

解答 解:(1)證明:連接BC,
由切線長定理可得,F(xiàn)C=FB,∠FCB=∠FBC,
又AB為直徑,BC⊥AB,
可得∠DCF+∠FCB=∠CDF+∠FBC=90°,
即有∠DCF=∠CDF,
即有FC=DF,
故DF=BF;
(2)連接OF,由OF為△ABD的中位線,
可得OF∥AC,
由AC=CG,可得OF=FG,
又FB⊥OB,
可得B為OG的中點(diǎn),
設(shè)圓的半徑為r,可得BG=r,AG=3r,
由切割線定理可得,CG2=BG•AG,
解得CG=$\sqrt{3}$r,
則$\frac{AG}{CG}$=$\frac{3r}{\sqrt{3}r}$=$\sqrt{3}$.

點(diǎn)評(píng) 本題考查圓的切線長定理、切割線定理和三角形的中位線定理的運(yùn)用,考查推理能力和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表(每行比上一行多一個(gè)數(shù)),設(shè)aij(i,j∈N+)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個(gè)數(shù),如a42=8,若aij=2010,則i,j的值的和為( 。
A.75B.76C.77D.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,圓C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+\sqrt{3}cos{φ}_{1}}\\{y=\sqrt{3}sin{φ}_{1}}\end{array}\right.$(φ1是參數(shù)),圓C2的參數(shù)方程為$\left\{\begin{array}{l}{x=cos{φ}_{2}}\\{y=1+sin{φ}_{2}}\end{array}\right.$(φ2是參數(shù)),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(I)求圓C1,圓C2的極坐標(biāo)方程;
(Ⅱ)射線θ=α( 0≤α<2π)同時(shí)與圓C1交于O,M兩點(diǎn),與圓C2交于O,N兩點(diǎn),求|OM|+|ON|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)系方程是$ρ=\frac{6}{{\sqrt{4+5{{sin}^2}θ}}}$,正方形ABCD的頂點(diǎn)都在C1上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為$(2,\frac{π}{6})$.
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為C2上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)最小正周期;
(2)求f(x)最大值;
(3)求f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2(lnx+lna)(a>0).
(1)當(dāng)a=1時(shí),設(shè)函數(shù)g(x)=$\frac{f(x)}{x}$,求函數(shù)g(x)的單調(diào)區(qū)間與極值;
(2)設(shè)f′(x)是f(x)的導(dǎo)函數(shù),若$\frac{{{f^'}(x)}}{x^2}$≤1對(duì)任意的x>0恒成立,求實(shí)數(shù)a的取值范圍;
(3)若x1,x2∈($\frac{1}{e}$,1),x1+x2<1,求證:x1x2<(x1+x24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)=x3+bx2+cx+d,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根;當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,現(xiàn)給出下列命題:
①f(x)-4=0和f′(x)=0有一個(gè)相同的實(shí)根    
②f(x)=0和f′(x)=0有一個(gè)相同的實(shí)根
③f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根 
④f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.
其中錯(cuò)誤的命題的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3-3x
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極值;
(2)若方程x3-3x-a+1=0有三個(gè)相異的實(shí)數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí)不等式f(x)+xf′(x)<0成立,若a=3f(3),b=-2f(-2),c=f(1),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

同步練習(xí)冊(cè)答案