A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
分析 構(gòu)造函數(shù)F(x)=xf(x),求導數(shù),判斷單調(diào)性求解.
解答 解:令函數(shù)F(x)=xf(x),則F′(x)=f(x)+xf′(x)
∵f(x)+xf′(x)<0,∴F(x)=xf(x),x∈(-∞,0)單調(diào)遞減,
∵y=f(x)是定義在R上的奇函數(shù),
∴F(x)=xf(x),在(-∞,0)上為減函數(shù),
可知F(x)=xf(x),(0,+∞)上為增函數(shù)
∵a=3•f(3),b=-2f(-2),c=f(1),
∴a=F(-3),b=F(-2),c=F(-1)
∴F(-3)>F(-2)>F(-1),
即a>b>c.
故選:A.
點評 本題考查復合函數(shù)的求導,導數(shù)在單調(diào)性中的應(yīng)用,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,2) | B. | (-∞,-2) | C. | (-2,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{6}$) | C. | $\sqrt{2}$f($\frac{π}{4}$)<2f($\frac{π}{6}$) | D. | f($\frac{π}{4}$)>$\frac{1}{2}$f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2) | B. | (2,$\root{3}{12}$) | C. | (1,$\root{3}{4}$) | D. | (2,$\root{3}{10}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com