分析 (1)連接OP,則OP⊥l.利用AC⊥l,BD⊥l,垂足分別為C,D,可得AC∥BD∥OP,結(jié)合AB為⊙O的一條直徑,即可證明PC=PD;
(2)證明∠DBP=∠OBP,即可證明:PB平分∠ABD.
解答 證明:(1)連接OP,則OP⊥l.
∵AC⊥l,BD⊥l,垂足分別為C,D,
∴AC∥BD∥OP,
∵AB為⊙O的一條直徑,
∴O為AB的中點(diǎn),
∴PC=PD;
(2)∵OP∥BD,
∴∠DBP=∠OPB,
∵OB=OP,
∴∠OPB=∠OBP,
∴∠DBP=∠OBP,
∴PB平分∠ABD.
點(diǎn)評(píng) 本題考查圓的切線的性質(zhì),考查角的相等的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{3}{2}$,+∞) | B. | (-∞,0) | C. | (0,$\frac{3}{2}$] | D. | (0,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是增函數(shù) | |
B. | 是減函數(shù) | |
C. | 在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減 | |
D. | 在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,$\frac{4}{5}$) | C. | (0,1) | D. | (0,$\frac{4}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com