已知定義在R上的奇函數(shù)f(x),滿足f(x-6)=-f(x),且在區(qū)間[0,3]上是增函數(shù).若方程f(x)=m(m>0)在區(qū)間[-12,12]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4=
-12
-12
分析:由條件“f(x-6)=-f(x)”得f(x+12)=f(x),說(shuō)明此函數(shù)是周期函數(shù),又是奇函數(shù),f(x-6)=-f(x)=f(-x)得到對(duì)稱軸方程,且在[0,3]上為增函數(shù),由這些畫出示意圖,由圖可解決問(wèn)題.
解答:解:由f(x-6)=-f(x)得f(x+12)=f(x),故周期為12.
又因?yàn)閒(x-6)=-f(x)=f(-x)
所以對(duì)稱軸為x=3,
此函數(shù)是周期函數(shù),又是奇函數(shù),且在[0,3]上為增函數(shù),
綜合條件得函數(shù)的示意圖,由圖看出,
四個(gè)交點(diǎn)中兩個(gè)交點(diǎn)的橫坐標(biāo)之和為2×(-9),
另兩個(gè)交點(diǎn)的橫坐標(biāo)之和為2×3,
所以x1+x2+x3+x4=-12.
故答案為:-12.
點(diǎn)評(píng):數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問(wèn)題便迎刃而解,且解法簡(jiǎn)捷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤
π2
時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問(wèn):是否存在實(shí)數(shù)a,b(a≠b),使f(x)在x∈[a,b]時(shí),函數(shù)值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:大連二十三中學(xué)2011學(xué)年度高二年級(jí)期末測(cè)試試卷數(shù)學(xué)(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個(gè)不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤數(shù)學(xué)公式時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案