已知定點A、B,且|AB|=4,動點P滿足|PA|-|PB|=3,則|PA|的最小值是(  )
A.      B.     C.     D.5
C
∵|AB|=4,|PA|-|PB|=3,設(shè)點A為左焦點,則滿足條件的點P在雙曲線右支上,則|PA|的最小值為右頂點到A的距離即2+
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知雙曲線的兩條漸近線分別為.

(1)求雙曲線的離心率;
(2)如圖,為坐標(biāo)原點,動直線分別交直線兩點(分別在第一,四象限),且的面積恒為8,試探究:是否存在總與直線有且只有一個公共點的雙曲線?若存在,求出雙曲線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的實軸長為2,則該雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2014·武漢模擬)已知點P是圓M:x2+(y+m)2=8(m>0,m≠)上一動點,點N(0,m)是圓M所在平面內(nèi)一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(1)當(dāng)P在圓M上運動時,記動點Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標(biāo)準(zhǔn)方程.
(2)過原點斜率為k的直線交曲線Г于A,B兩點,其中A在第一象限,且它在x軸上的射影為點C,直線BC交曲線Г于另一點D,記直線AD的斜率為k′,是否存在m,使得對任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從雙曲線的左焦點引圓的切線,切點為,延長交雙曲線右支于點,若為線段的中點,為坐標(biāo)原點,則=            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線的左、右焦點分別為F1、F2,A是雙曲線漸近線上的一點,AF1⊥AF2,原點O到直線AF1的距離為|OF1|,則雙曲線的離心率為(    )
A.+1B.-1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=4x的焦點到雙曲線的漸近線的距離是( 。
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的焦點坐標(biāo)是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)直線L過雙曲線C的一個焦點,且與C的一條對稱軸垂直,L與C交于A ,B兩點,為C的實軸長的2倍,則C的離心率為
A.B.C.2D.3

查看答案和解析>>

同步練習(xí)冊答案