【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且sinA+cosA=2.
(Ⅰ)求角A的大小;
(Ⅱ)現(xiàn)給出三個條件:①a=2;②B=45°;③c= .試從中選出兩個可以確△ABC的條件,寫出你的選擇,并以此為依據(jù)求△ABC的面積.(只寫出一個方案即可)
【答案】(Ⅰ)(Ⅱ) 選擇①②,
【解答】解:(Ⅰ)依題意得2sin(A+)=2,即sin(A+)=1,
∵0<A<π,
∴<A+<,
∴A+=,
∴A=.
(Ⅱ)選擇①②由正弦定理=,得b=sinB=2,
∵A+B+C=π,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=+,
∴S=absinC=×2×2×=+1.
【解析】試題分析:(1)根據(jù)題目條件,利用輔助角公式,再結(jié)合是三角形的內(nèi)角,即可求出的大;(2)根據(jù)(1)的結(jié)論,利用條件①, ②,并結(jié)合正弦定理,即可求出邊,進(jìn)而可求出邊和角,從而可確定,并可以求得其面積.
試題解析:(1)由,得
因為,所以,
所以,即
(2)方案一:選①和②
由正弦定理得,
又,
的面積為
方案二:選①和③
由余弦定理得,
則,
解得,于是
的面積為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(2x+3)+x2
(1)討論f(x)的單調(diào)性;
(2)求f(x)在區(qū)間[﹣ , ]的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔1小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別做記錄,抽查數(shù)據(jù)如下:
甲車間:102,101,99,98,103,98,99;
乙車間:110,115,90,85,75,115,110.
(1)問:這種抽樣是何種抽樣方法;
(2)估計甲、乙兩車間包裝產(chǎn)品的質(zhì)量的均值與方差,并說明哪個均值的代表性好,哪個車間包裝產(chǎn)品的質(zhì)量較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷的單調(diào)性;
(2)求函數(shù)的零點的個數(shù);
(3)令,若函數(shù)在(0,)內(nèi)有極值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.
(1)根據(jù)頻率分布直方圖計算各小長方形的寬度;
(2)估計該公司投入4萬元廣告費之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值)
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 2 | 3 | 2 | 7 |
表格中的數(shù)據(jù)顯示,x與y之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并計算y關(guān)于x的回歸方程.
回歸直線的斜率和截距的最小二乘法估計公式分別為 , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點,且BE⊥B1C.
(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)設(shè).
①若函數(shù)在處的切線過點,求的值;
②當(dāng)時,若函數(shù)在上沒有零點,求的取值范圍;
(2)設(shè)函數(shù),且(),求證:當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀如圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬出資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知,,其中曲線段是以為頂點,為對稱軸的拋物線的一部分.
(1)求線段,線段,曲線段所圍成區(qū)域的面積;
(2)求廠家廣告區(qū)域的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地農(nóng)業(yè)監(jiān)測部門統(tǒng)計發(fā)現(xiàn):該地區(qū)近幾年的生豬收購價格每四個月會重復(fù)出現(xiàn),但生豬養(yǎng)殖成本逐月遞增.下表是今年前四個月的統(tǒng)計情況:
月份 | 1月份 | 2月份 | 3月份 | 4月份 |
收購價格(元/斤) | 6 | 7 | 6 | 5 |
養(yǎng)殖成本(元/斤) | 3 | 4 | 4.6 | 5 |
現(xiàn)打算從以下兩個函數(shù)模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,﹣π<φ<π),
②y=log2(x+a)+b
中選擇適當(dāng)?shù)暮瘮?shù)模型,分別來擬合今年生豬收購價格(元/斤)與相應(yīng)月份之間的函數(shù)關(guān)系、養(yǎng)殖成本(元/斤)與相應(yīng)月份之間的函數(shù)關(guān)系.
(1)請你選擇適當(dāng)?shù)暮瘮?shù)模型,分別求出這兩個函數(shù)解析式;
(2)按照你選定的函數(shù)模型,幫助該部門分析一下,今年該地區(qū)生豬養(yǎng)殖戶在8月和9月有沒有可能虧損?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com