分析 (1)利用遞推公式可得bn;
(2)利用等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式即可得出an;
(3)利用“錯位相減法”、等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式即可得出.
解答 解:(1)∵Sn=2bn-2,∴b1=2b1-2,解得b1=2.
當(dāng)n≥2時,bn=Sn-Sn-1=2bn-2-(2bn-1-2),化為bn=2bn-1,
∴數(shù)列{bn}是等比數(shù)列,公比與首項(xiàng)都為2,
∴bn=2n.
(2)設(shè)等差數(shù)列{an}的公差為d,∵a5=14,a7=20.
∴$\left\{\begin{array}{l}{{a}_{1}+4d=14}\\{{a}_{1}+6d=20}\end{array}\right.$,解得a1=2,d=3,
∴數(shù)列{an}的前n項(xiàng)和Rn=2n+$\frac{n(n-1)}{2}×3$=$\frac{3}{2}{n}^{2}$+$\frac{1}{2}n$.
(3)an=2+3(n-1)=3n-1.
cn=an•bn=(3n-1)•2n.
∴數(shù)列{cn}的前n項(xiàng)和Tn=2×2+5×22+8×23+…+(3n-1)•2n.
2Tn=2×22+5×23+…+(3n-4)•2n+(3n-1)•2n+1,
∴-Tn=4+3(22+23+…+2n)-(3n-1)•2n+1=$3×\frac{2×({2}^{n}-1)}{2-1}$-2-(3n-1)•2n+1=(4-3n)•2n+1-8,
∴Tn=(3n-4)•2n+1+8.
點(diǎn)評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com