【題目】已知橢圓的左右頂點(diǎn)分別是,,點(diǎn)在橢圓上,過(guò)該橢圓上任意一點(diǎn)P作軸,垂足為Q,點(diǎn)C在的延長(zhǎng)線上,且.
(1)求橢圓的方程;
(2)求動(dòng)點(diǎn)C的軌跡E的方程;
(3)設(shè)直線(C點(diǎn)不同A、B)與直線交于R,D為線段的中點(diǎn),證明:直線與曲線E相切;
【答案】(1);(2);(3)證明略;
【解析】
(1)根據(jù)頂點(diǎn)坐標(biāo)可知,將代入橢圓方程可求得,進(jìn)而得到橢圓方程;(2)設(shè),,可得到,將代入橢圓方程即可得到所求的軌跡方程;(3)設(shè),可得直線方程,進(jìn)而求得和點(diǎn)坐標(biāo);利用向量坐標(biāo)運(yùn)算可求得,從而證得結(jié)論.
(1)由題意可知:
將代入橢圓方程可得:,解得:
橢圓的方程為:
(2)設(shè),
由軸,可得:,即
將代入橢圓方程得:
動(dòng)點(diǎn)的軌跡的方程為:
(3)設(shè),則直線方程為:
令,解得:
,
即
直線與曲線相切
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)設(shè),求函數(shù)的最大值;
(3)已知,求函數(shù)的最大值;
(4)設(shè),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果△A1B1C1的三個(gè)內(nèi)角的余弦值分別等于△A2B2C2的三個(gè)內(nèi)角的正弦值,則( )
A.△A1B1C1和△A2B2C2都是銳角三角形
B.△A1B1C1和△A2B2C2都是鈍角三角形
C.△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形
D.△A1B1C1是銳角三角形,△A2B2C2是鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,x=(2a+c,b),y=(cosB,cosC),且x·y=0.
(1)求B的大。
(2)若b=,求||的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集為R,函數(shù)f(x)=lg(1﹣x)的定義域?yàn)榧?/span>A,集合B={x|x2﹣x﹣6>0}.
(Ⅰ)求A∪B;
(Ⅱ)若C={x|m﹣1<x<m+1},C(A∩(RB)),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】就實(shí)數(shù)的取值范圍,討論關(guān)于的函數(shù)與 軸的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)镽,是的極大值點(diǎn),以下結(jié)論一定正確的是________.
①,;
②是的極小值點(diǎn);
③是的極小值點(diǎn);
④是的極小值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某出租車(chē)公司為了解本公司出租車(chē)司機(jī)對(duì)新法規(guī)的知曉情況,隨機(jī)對(duì)100名出租車(chē)司機(jī)進(jìn)行調(diào)查.調(diào)查問(wèn)卷共10道題,答題情況如下表:
答對(duì)題目數(shù) | 8 | 9 | ||
女 | 2 | 13 | 12 | 8 |
男 | 3 | 37 | 16 | 9 |
(1)如果出租車(chē)司機(jī)答對(duì)題目數(shù)大于等于9,就認(rèn)為該司機(jī)對(duì)新法規(guī)的知曉情況比較好,試估計(jì)該公司的出租車(chē)司機(jī)對(duì)新法規(guī)知曉情況比較好的概率;
(2)從答對(duì)題目數(shù)少于8的出租車(chē)司機(jī)中任選出兩人做進(jìn)一步的調(diào)查,求選出的兩人中至少有一名女出租車(chē)司機(jī)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品,每售出一噸可獲利萬(wàn)元,每積壓一噸則虧損萬(wàn)元.某經(jīng)銷(xiāo)商統(tǒng)計(jì)出過(guò)去年里市場(chǎng)年需求量的頻數(shù)分布表如下表所示.
年需求量(噸) | |||||
年數(shù) |
(1)求過(guò)去年年需求量的平均值;(每個(gè)區(qū)間的年需求量用中間值代替)
(2)今年該經(jīng)銷(xiāo)商欲進(jìn)貨噸,以(單位:噸,)表示今年的年需求量,以(單位:萬(wàn)元)表示今年銷(xiāo)售的利潤(rùn),試將表示的函數(shù)解析式,并求今年的年利潤(rùn)不少于萬(wàn)元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com