12.復(fù)數(shù)z滿足z=$\frac{1+i}{i}$+3i,則|z|=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:z=$\frac{1+i}{i}$+3i=$\frac{-i(1+i)}{-i•i}$+3i=-i+1+3i=1+2i,
則|z|=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,則實(shí)數(shù)a的值為(  )
A.2或-1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=($\frac{1}{2}$)x,g(x)=log${\;}_{\frac{1}{2}}$x,記函數(shù)h(x)=$\left\{\begin{array}{l}{f(x),f(x)≤g(x)}\\{g(x),f(x)>g(x)}\end{array}\right.$,則不等式h(x)≥$\frac{1}{2}$的解集為(0,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)f(x)=(x-4)0+$\sqrt{\frac{2}{x-1}}$,則函數(shù)f(x)的定義域?yàn)椋?,4)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若直線過(guò)點(diǎn)($\sqrt{3}$,-3)且傾斜角為30°,則該直線的方程為y=$\frac{{\sqrt{3}}}{3}$x-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|x2-2x-3≤0},集合B={x|log2x>1},則A∩B=(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知0<x<$\frac{5}{4}$,則x(5-4x)的最大值是$\frac{25}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.計(jì)算:(lg$\frac{1}{4}$-lg25)÷100${\;}^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知等差數(shù)列{an}中,a3=7,a6=16,則a9=25.

查看答案和解析>>

同步練習(xí)冊(cè)答案