3.函數(shù)y=sin2x的圖象向左平移φ(φ>0)個(gè)單位后關(guān)于直線$x=\frac{π}{3}$對(duì)稱,則φ的最小值為(  )
A.$\frac{π}{12}$B.$\frac{5π}{12}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 由條件根據(jù)誘導(dǎo)公式、y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:函數(shù)y=sin2x的圖象向左平移φ個(gè)單位,可得sin2(x+φ)=sin(2x+2φ),圖象此時(shí)關(guān)于直線$x=\frac{π}{3}$對(duì)稱,
由2x+2φ=$\frac{π}{2}+kπ$,k∈Z,即$\frac{2π}{3}+$2φ=$\frac{π}{2}+kπ$,
可得:φ=$\frac{1}{2}$$kπ-\frac{π}{12}$,(k∈Z).
∵φ>0,
當(dāng)k=1時(shí),可得φ最小值為$\frac{5π}{12}$.
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+∅)的圖象變換規(guī)律,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.雙曲線mx2+ny2=1(mn<0)的一條漸近線方程為$y=\sqrt{3}x$,則它的離心率為(  )
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$D.2或$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某班為了提高學(xué)生學(xué)習(xí)英語的興趣,在班內(nèi)舉行英語寫、說、唱綜合能力比賽,比賽分為預(yù)賽和決賽2個(gè)階段,預(yù)賽為筆試,決賽為說英語、唱英語歌曲,將所有參加筆試的同學(xué)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖,其中后三個(gè)矩形高度之比依次為4:2:1,落在[80,90)的人數(shù)為12人.
(Ⅰ)求此班級(jí)人數(shù);
(Ⅱ)按規(guī)定預(yù)賽成績(jī)不低于90分的選手參加決賽,已知甲乙兩位選手已經(jīng)取得決賽資格,參加決賽的選手按抽簽方式?jīng)Q定出場(chǎng)順序.
(i)甲不排在第一位乙不排在最后一位的概率;
(ii)記甲乙二人排在前三位的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若$\int_1^e{\frac{2}{x}dx=a}$,則${({x-\frac{a}{x}})^6}$展開式中的常數(shù)項(xiàng)為-160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.2017年由央視舉辦的一檔文化益智節(jié)目《中國詩詞大會(huì)》深受觀眾喜愛,某記者調(diào)查了部分年齡在[10,70]的觀眾,得到如下頻率分布直方圖.若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.
(1)請(qǐng)補(bǔ)充完整頻率分布直方圖,并估計(jì)這組數(shù)據(jù)的平均數(shù)$\overline x$;
(2)現(xiàn)根據(jù)觀看年齡,從第四組和第六組的所有觀眾中任意選2人,記他們的年齡分別為x,y,若|x-y|≥10,則稱此2人為“最佳詩詞搭檔”,試求選出的2人為“最佳詩詞搭檔”的概P;
(3)以此樣本的頻率當(dāng)作概率,現(xiàn)隨機(jī)從這組樣本中選出3名觀眾,求年齡不低于40歲的人數(shù)ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖是一個(gè)幾何體的三視圖,則該幾何體的表面積為33π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,$AB=3,AC=2,\overrightarrow{BD}=\frac{1}{2}\overrightarrow{BC},則\overrightarrow{AD}•\overrightarrow{DB}$的值為( 。
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.$\frac{5}{4}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{y≤2}\end{array}\right.$,則$\frac{y}{x}$的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)(1+i)2+$\frac{2}{1+i}$的共軛復(fù)數(shù)是( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

同步練習(xí)冊(cè)答案