分析 (1)可得∠BEF=∠EBF,EF=FB,即CB=CF+EF=1,得圓C:x2+(y-1)2=1.
(2)當切線l垂直y軸時,|OA|•|OB|=$\sqrt{2}$×$\sqrt{2}$=2,當切線l不垂直y軸時,設其方程為x=ky+b,A(x1,y1),B(x2,y2).由原點O(0,0)到直線AB的距離為1,得b2=1+k2.由$\left\{\begin{array}{l}{x=ky+b}\\{{x}^{2}+(y-1)^{2}=1}\end{array}\right.$得(1+k2)y2+(2kb-2)y+b2=0,y1y2=$\frac{^{2}}{1+{k}^{2}}$=1,|OA|•|OB|=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$×$\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}$=2$\sqrt{{y}_{1}•{y}_{2}}$=2,即可得|OA|•|OB|的值是否為定值2,
解答 解:(1)∵CA=CB,EF∥AC,∴∠BEF=∠EBF∴EF=FB,
∴CB=CF+EF=1,
得圓C:x2+(y-1)2=1;
(2)當切線l垂直y軸時,其方程為y=1,此時A(1,1),B(-1,1),
|OA|•|OB|=$\sqrt{2}$×$\sqrt{2}$=2,
當切線l不垂直y軸時,設其方程為x=ky+b,A(x1,y1),B(x2,y2).
∵原點O(0,0)到直線AB的距離為1,∴$\frac{|b|}{\sqrt{1+{k}^{2}}}=1$,即b2=1+k2.
由$\left\{\begin{array}{l}{x=ky+b}\\{{x}^{2}+(y-1)^{2}=1}\end{array}\right.$得(1+k2)y2+(2kb-2)y+b2=0,
∴y1y2=$\frac{^{2}}{1+{k}^{2}}$=1.
∵x12+(y1-1)2=1,x22+(y2-1)2=1.
∴|OA|•|OB|=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$×$\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}$=2$\sqrt{{y}_{1}•{y}_{2}}$=2.
綜上,|OA|•|OB|的值是否為定值2.
點評 本題考查了圓的方程,圓與圓的位置關系,圓的切線,及直線與圓的位置關系,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
組號 | 重量分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.050 |
第2組 | [165,170) | ① | 0.350 |
第3組 | [170,175) | 30 | ② |
第4組 | [175,180) | 20 | 0.200 |
第5組 | [180,185] | 10 | 0.100 |
合計 | 100 | 1.00 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $-\frac{2}{5}$ | C. | $\frac{2}{3}$ | D. | $-\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2] | B. | [1,2] | C. | (-∞,1]∪(2,+∞) | D. | (-∞,1)∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -6 | B. | -4 | C. | 4 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com