【題目】如圖,在四棱錐中,底面,,,,,點為棱的中點.
(1)證明:面;
(2)證明:面面;
(3)求直線與面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設(shè)橢圓: ,長軸的右端點與拋物線: 的焦點重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過作直線交拋物線于, 兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動圓M與圓F1:x2+y2+6x+5=0外切,同時與圓F2:x2+y2﹣6x﹣91=0內(nèi)切.
(1)求動圓圓心M的軌跡方程E,并說明它是什么曲線;
(2)若直線yx+m與(1)中的軌跡E有兩個不同的交點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)點是拋物線上的動點,是的準線上的動點,直線過且與(為坐標原點)垂直,則點到的距離的最小值的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極坐標建立極坐標系,圓的極坐標方程為.
求的普通方程;
將圓平移,使其圓心為,設(shè)是圓上的動點,點與關(guān)于原點對稱,線段的垂直平分線與相交于點,求的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極坐標建立極坐標系,圓的極坐標方程為.
求的普通方程;
將圓平移,使其圓心為,設(shè)是圓上的動點,點與關(guān)于原點對稱,線段的垂直平分線與相交于點,求的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓1(a>b>0)的右頂點為(2,0),離心率為,P是直線x=4上任一點,過點M(1,0)且與PM垂直的直線交橢圓于A,B兩點.
(1)求橢圓的方程;
(2)若P點的坐標為(4,3),求弦AB的長度;
(3)設(shè)直線PA,PM,PB的斜率分別為k1,k2,k3,問:是否存在常數(shù)λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,平面,為邊上一點,,.
(1)證明:平面平面.
(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,點的極坐標為,斜率為的直線經(jīng)過點.
(I)求曲線的普通方程和直線的參數(shù)方程;
(II)設(shè)直線與曲線相交于,兩點,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com