分析 根據(jù)題意畫出圖形,結(jié)合圖形分別計(jì)算直線MA、NA與直線l的斜率,比較即可得出結(jié)論.
解答 解:∵點(diǎn)A(2,-1),M(-2,3),N(1,$\sqrt{3}$-1),
∴直線MA的斜率是kMA=$\frac{-1-3}{2-(-2)}$=-1,
直線NA的斜率是kNA=$\frac{-1-(\sqrt{3}-1)}{2-1}$=-$\sqrt{3}$;
又直線l的傾斜角α的取值范圍是120°<α<135°,
∴該直線的斜率的范圍是tan120°<kl<tan135°,
即-$\sqrt{3}$<kl<-1;
∴直線l與線段MN有交點(diǎn),如圖所示:
點(diǎn)評(píng) 本題考查了直線斜率與傾斜角的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果非零向量$\overrightarrow{a}$,$\overrightarrow$的方向相反或相同,那么$\overrightarrow{a}$+$\overrightarrow$的方向必與$\overrightarrow{a}$,$\overrightarrow$中的一個(gè)向量的方向相同 | |
B. | 若$\overrightarrow{AB}$+$\overrightarrow{BC}$$+\overrightarrow{CA}$=$\overrightarrow{0}$,則A,B,C為三角形的三個(gè)頂點(diǎn) | |
C. | 設(shè)$\overrightarrow{a}$≠$\overrightarrow{0}$,若$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$∥$\overrightarrow$ | |
D. | 若|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow$=$\overrightarrow{0}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com