2.已知直線l過點A(2,-1),傾斜角α的取值范圍是120°<α<135°,在直角坐標系中給定兩點M(-2,3),N(1,$\sqrt{3}$-1),問l與線段MN是否有交點?若有交點,請說明理由.

分析 根據(jù)題意畫出圖形,結(jié)合圖形分別計算直線MA、NA與直線l的斜率,比較即可得出結(jié)論.

解答 解:∵點A(2,-1),M(-2,3),N(1,$\sqrt{3}$-1),
∴直線MA的斜率是kMA=$\frac{-1-3}{2-(-2)}$=-1,
直線NA的斜率是kNA=$\frac{-1-(\sqrt{3}-1)}{2-1}$=-$\sqrt{3}$;
又直線l的傾斜角α的取值范圍是120°<α<135°,
∴該直線的斜率的范圍是tan120°<kl<tan135°,
即-$\sqrt{3}$<kl<-1;
∴直線l與線段MN有交點,如圖所示:

點評 本題考查了直線斜率與傾斜角的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}滿足an=1,且an=3an-1+3n(n≥2且n∈N*
(1)求證:數(shù)列{$\frac{{a}_{n}}{{3}^{n}}$}是等差數(shù)列:
(2)求數(shù)列{an}的通項公式:
(3)設(shè)數(shù)列{an}的前n項和為Sn,求證:$\frac{{S}_{n}}{{3}^{n}}$>$\frac{3}{2}n$-$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列命題正確的是( 。
A.如果非零向量$\overrightarrow{a}$,$\overrightarrow$的方向相反或相同,那么$\overrightarrow{a}$+$\overrightarrow$的方向必與$\overrightarrow{a}$,$\overrightarrow$中的一個向量的方向相同
B.若$\overrightarrow{AB}$+$\overrightarrow{BC}$$+\overrightarrow{CA}$=$\overrightarrow{0}$,則A,B,C為三角形的三個頂點
C.設(shè)$\overrightarrow{a}$≠$\overrightarrow{0}$,若$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$∥$\overrightarrow$
D.若|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在等差數(shù)列{an}中,若a1+a2=30,a3+a4=60,則a5+a6=90,a7+a8=120.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.求下列不等式的解集:
(1)arcsin(1-x)≤arcsin2x;           
(2)arcsin(3x-2)≤$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知定義在區(qū)間[-1,1]上的函數(shù)f(x)=$\sqrt{1+{x}^{2}}$,設(shè)任意x1,x2∈[-1,1],且x1≠x2.求證:|f(x1)-f(x2)|<|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x(a∈R),g(x)=$\frac{19}{6}$x-$\frac{1}{3}$.是否處在實數(shù)a,存在x1∈[-1,1],x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.數(shù)列{an}是等比數(shù)列,a2=2,a6=32,求a1,S4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖所示的程序框圖,若輸入n的值為5,則輸出s的值為( 。
A.7B.8C.10D.11

查看答案和解析>>

同步練習冊答案