17.求下列不等式的解集:
(1)arcsin(1-x)≤arcsin2x;           
(2)arcsin(3x-2)≤$\frac{π}{6}$.

分析 由條件利用反正弦函數(shù)的定義和性質(zhì),求得x的范圍.

解答 解:(1)∵y=arcsinx在[-1,1]上是增函數(shù),arcsin(1-x)≤arcsin2x,
∴$\left\{\begin{array}{l}{-1≤1-x≤1}\\{-1≤2x≤1}\\{1-x≤2x}\end{array}\right.$,求得$\frac{1}{3}$≤x≤$\frac{1}{2}$,故要求的x的范圍為[$\frac{1}{3}$,$\frac{1}{2}$].           
(2)∵arcsin(3x-2)≤$\frac{π}{6}$,∴sin[arcsin(3x-2)]≤sin$\frac{π}{6}$=$\frac{1}{2}$,
即-1≤3x-2≤$\frac{1}{2}$,求得$\frac{1}{3}$≤x≤$\frac{5}{6}$,故不等式的解集為[$\frac{1}{3}$,$\frac{5}{6}$].

點(diǎn)評 本題主要考查反正弦函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)集合A={(m1,m2,m3)|mi∈{-2,0,2},i∈{1,2,3}},則集合A滿足條件:“2≤|m1|+|m2|+|m3|≤5”的元素個數(shù)為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在數(shù)列{an}中,an=n(sin$\frac{nπ}{2}$+cos$\frac{nπ}{2}$),前n項(xiàng)和為Sn,則S100=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{z-3i}{4i}$=i,則|z|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等差數(shù)列的第1項(xiàng)是7,第9項(xiàng)是1,則它的第5項(xiàng)是(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l過點(diǎn)A(2,-1),傾斜角α的取值范圍是120°<α<135°,在直角坐標(biāo)系中給定兩點(diǎn)M(-2,3),N(1,$\sqrt{3}$-1),問l與線段MN是否有交點(diǎn)?若有交點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.證明:三點(diǎn)(1,1)、(-1,-1)和(-$\sqrt{3}$,$\sqrt{3}$)為正三角形的頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若數(shù)列{an}的通項(xiàng)公式為an=4•3-n(n∈N*),則這個數(shù)列是一個( 。
A.以4為首項(xiàng),3為公比的等比數(shù)列B.以4為首項(xiàng),$\frac{1}{3}$為公比的等比數(shù)列
C.以$\frac{4}{3}$為首項(xiàng),3為公比的等比數(shù)列D.以$\frac{4}{3}$為首項(xiàng),$\frac{1}{3}$為公比的等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+1,x≥1}\\{(\frac{1}{2})^{x}+\frac{1}{2},x<1}\end{array}\right.$,則f(f(2))=( 。
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

同步練習(xí)冊答案