分析 作出不等式組$\left\{\begin{array}{l}x≥1\\ x-y+1≥0\\ 2x-y-2≤0\end{array}\right.$對應(yīng)的平面區(qū)域,利用x2+y2的幾何意義求最值.
解答 解:設(shè)z=x2+y2,則z的幾何意義為動點(diǎn)P(x,y)到原點(diǎn)距離的平方.
作出不等式組$\left\{\begin{array}{l}x≥1\\ x-y+1≥0\\ 2x-y-2≤0\end{array}\right.$對應(yīng)的平面區(qū)域如圖:
由$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-2=0}\end{array}\right.$得C(3,4),由圖象可知點(diǎn)C(3,4)到原點(diǎn)的距離最大,最大值為5.
點(diǎn)B(1,0)到原點(diǎn)的距離最小,最小值為z=1.
x2+y2的取值范圍是[1,25].
故答案為:[1,25].
點(diǎn)評 本題主要考查兩點(diǎn)間的距離公式,以及簡單線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決線性規(guī)劃內(nèi)容的基本方法,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+2i | B. | 1-2i | C. | -1+2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $-\frac{1}{2}$ | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com