分析 作出不等式組$\left\{\begin{array}{l}x≥1\\ x-y+1≥0\\ 2x-y-2≤0\end{array}\right.$對應的平面區(qū)域,利用x2+y2的幾何意義求最值.
解答 解:設z=x2+y2,則z的幾何意義為動點P(x,y)到原點距離的平方.
作出不等式組$\left\{\begin{array}{l}x≥1\\ x-y+1≥0\\ 2x-y-2≤0\end{array}\right.$對應的平面區(qū)域如圖:
由$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-2=0}\end{array}\right.$得C(3,4),由圖象可知點C(3,4)到原點的距離最大,最大值為5.
點B(1,0)到原點的距離最小,最小值為z=1.
x2+y2的取值范圍是[1,25].
故答案為:[1,25].
點評 本題主要考查兩點間的距離公式,以及簡單線性規(guī)劃的應用,利用目標函數(shù)的幾何意義是解決線性規(guī)劃內容的基本方法,利用數(shù)形結合是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1+2i | B. | 1-2i | C. | -1+2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | $-\frac{1}{2}$ | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{2}{3}$] | B. | {1} | C. | {$\frac{1}{2}$,$\frac{2}{3}$,1} | D. | [$\frac{1}{3}$,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com