不等式組
-2≤2x-y≤2
-2≤2x+y≤2
圍成的區(qū)域?yàn)棣福軌虬褏^(qū)域Ω的周長(zhǎng)和面積同時(shí)分為相等兩部分的曲線為( 。
A、y=x3-3x+1
B、y=xsin2x
C、y=ln
2-x
2+x
D、y=
1
4
(ex+e-x
考點(diǎn):二元一次不等式(組)與平面區(qū)域
專題:不等式的解法及應(yīng)用
分析:畫出平面區(qū)域,發(fā)現(xiàn)Ω是關(guān)于原點(diǎn)中心對(duì)稱的菱形,所以只要在選項(xiàng)中找出是奇函數(shù)的即可.
解答: 解:由題意Ω對(duì)應(yīng)的區(qū)域如圖,
Ω是關(guān)于關(guān)于原點(diǎn)成中心對(duì)稱的菱形,
所以能夠把區(qū)域Ω的周長(zhǎng)和面積同時(shí)分為相等兩部分的曲線對(duì)應(yīng)的函數(shù)為奇函數(shù),
選項(xiàng)A是非奇非偶的函數(shù),B是偶函數(shù),D是偶函數(shù);
故選C.
點(diǎn)評(píng):本題考查了二元一次不等式組表示的平面區(qū)域的畫法以及與函數(shù)奇偶性的結(jié)合;關(guān)鍵是明確能夠把區(qū)域Ω的周長(zhǎng)和面積同時(shí)分為相等兩部分的曲線對(duì)應(yīng)的函數(shù)的實(shí)質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:ρ=cosα+sinα,直線L:ρcos(α+
π
4
)=2
2
,求過(guò)點(diǎn)C且與直線L垂直的極坐標(biāo)方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x-
3x
的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若凼數(shù)y=a-bsinx(b>0)的最大值為
3
2
,最小值為-
1
2
,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=kx(k>0)與函數(shù)y=x2的圖象交于點(diǎn)O,P,過(guò)P作PA⊥x軸于A.在△OAP中任取一點(diǎn),則該點(diǎn)落在陰影部分的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1的焦距為10,點(diǎn)P(1,2)在C的漸近線上,則C的方程為( 。
A、
x2
80
-
y2
20
=1
B、
x2
20
-
y2
80
=1
C、
x2
5
-
y2
20
=1
D、
x2
20
-
y2
5
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=asinx+blog2(x+
x2+1
)+4(a、b為常數(shù)),若f(x)在(0,+∞)上有最小值-4,則f(x)在(-∞,0)上有( 。
A、最大值-2
B、最大值 4
C、最大值10
D、最大值12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知點(diǎn)A(0,1),B點(diǎn)在直線y=-1上,M點(diǎn)滿
MB
OA
,
MA
AB
=
MB
BA
,M點(diǎn)的軌跡曲線C
(1)求曲線C的方程;
(2)斜率為1的直線l過(guò)原點(diǎn)O,求l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)是定義域?yàn)镽的奇函數(shù),且對(duì)任意的x∈R,都有f(x+4)=f(x)成立,當(dāng)x∈(0,2),f(x)=-x2+1.
(Ⅰ)當(dāng)x∈(2,6)時(shí),求函數(shù)f(x)的解析式;
(Ⅱ)求不等式f(x)>-1在區(qū)間(2,6)上的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案