【題目】給出下列五個(gè)命題:
①直線平行于平面內(nèi)的一條直線,則;
②若是銳角三角形,則;
③已知是等差數(shù)列的前項(xiàng)和,若,則;
④當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為.
其中正確命題的序號為___________.
【答案】②③
【解析】
由命題的真假定義判斷命題的真假,對每項(xiàng)判斷即可.
對①,直線平行于平面內(nèi)的一條直線,則;由線面平行的判定,缺少條件:直線在平面外,故①錯(cuò)誤.
對②,若是銳角三角形,則;因?yàn)椋?/span>是銳角三角形,,,
由余弦函數(shù)在上單調(diào)遞減可知:;故②正確.
對③,已知是等差數(shù)列的前項(xiàng)和,若,則設(shè)等差數(shù)列的首項(xiàng)和公差,
由等差數(shù)列求和公式得:,則有;故③正確.
對④,當(dāng)時(shí),不等式恒成立,設(shè),
當(dāng)時(shí),不等式恒成立時(shí),有:且,解得:,則實(shí)數(shù)的取值范圍為,.故④錯(cuò)誤.
故答案為:②③
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,(c為常數(shù),n∈N*),且a1,a2,a5成公比不為1的等比數(shù)列.
(1)求證:數(shù)列是等差數(shù)列;
(2)求c的值;
(3)設(shè)bn=anan+1,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,,,若為的中點(diǎn).
(1)證明:平面;
(2)求異面直線和所成角;
(3)設(shè)線段上有一點(diǎn),當(dāng)與平面所成角的正弦值為時(shí),求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)證明:在區(qū)間上有且僅有個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2ax-1+a,a∈R.
(1)若a=2,試求函數(shù)y=(x>0)的最小值;
(2)對于任意的x∈[0,2],不等式f(x)≤a成立,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,圓:過橢圓的三個(gè)頂點(diǎn),過點(diǎn)的直線(斜率存在且不為0)與橢圓交于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)證明:在軸上存在定點(diǎn),使得為定值,并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,一個(gè)長軸頂點(diǎn)在直線上,若直線與橢圓交于,兩點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為.
(1)求該橢圓的方程.
(2)若,試問的面積是否為定值?若是,求出這個(gè)定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的“ 猜想”是指:任取一個(gè)自然數(shù),如果它是偶數(shù),我們就把它除以,如果它是奇數(shù)我們就把它乘再加上,在這樣一個(gè)變換下,我們就得到了一個(gè)新的自然數(shù)。如果反復(fù)使用這個(gè)變換,我們就會(huì)得到一串自然數(shù),猜想就是:反復(fù)進(jìn)行上述運(yùn)算后,最后結(jié)果為,現(xiàn)根據(jù)此猜想設(shè)計(jì)一個(gè)程序框圖如圖所示,執(zhí)行該程序框圖輸入的,則輸出值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com