20.已知不等式ax2-3x+2>0的解集為{x|x<1或x>b}(a,b,c∈R)
(1)求a,b的值;
(2)解關(guān)于x不等式ax2-(ac+b)x+bc<0.

分析 (1)根據(jù)不等式與對(duì)應(yīng)方程的關(guān)系,利用根與系數(shù)的關(guān)系,求出a、b的值;
(2)由(1)知不等式為x2-(c+2)x+2c<0,討論c與2的大小,寫出對(duì)應(yīng)不等式的解集.

解答 解:(1)不等式ax2-3x+2>0的解集為{x|x<1或x>b},
∴方程ax2-3x+2=0的實(shí)數(shù)根為1和b,
由根與系數(shù)的關(guān)系知,$\left\{\begin{array}{l}{1+b=\frac{3}{a}}\\{1×b=\frac{2}{a}}\end{array}\right.$,
解得a=1,b=2;
(2)由(1)知,不等式ax2-(ac+b)x+bc<0為
x2-(c+2)x+2c<0,
即(x-c)(x-2)<0,
則不等式對(duì)應(yīng)方程的實(shí)數(shù)根為c和2,
當(dāng)c=2時(shí),不等式化為(x-2)2<0,解集為∅;
當(dāng)c>2時(shí),不等式的解集為{x|2<x<c};
當(dāng)c<2時(shí),不等式的解集為{x|c<x<2}.

點(diǎn)評(píng) 本題考查了一元二次不等式與對(duì)應(yīng)方程的關(guān)系應(yīng)用問題,也考查了分類討論思想問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}滿足對(duì)任意的n∈N*,都有a13+a23+…+an3=(a1+a2+…+an2且an>0.
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若bn=$\frac{8{a}_{n+3}}{{{a}_{n+2}}^{2}{{a}_{n+4}}^{2}}$,記Sn=$\underset{\stackrel{n}{∑}}{i=1}_{i}$,如果Sn<$\frac{m}{9}$對(duì)任意的n∈N*恒成立,求正整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F作傾斜角為α的直線交橢圓x軸上方于一點(diǎn)P,其中α∈[$\frac{2π}{3}$,$\frac{5π}{6}$],$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OF}$),|$\overrightarrow{OQ}$|=$\sqrt{{a}^{2}-^{2}}$,則橢圓離心率的最大值為( 。
A.$\frac{\sqrt{3}-1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.拋擲一顆骰子兩次,在第一次擲得向上一面點(diǎn)數(shù)是偶數(shù)的條件下,則第二次擲得向上一面點(diǎn)數(shù)也是偶數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知an=$\frac{n(1-b)+3b-2}{{{b^{n-1}}}}$(b>1,n≥2),若對(duì)不小于4的自然數(shù)n,恒有不等式an+1>an成立,則實(shí)數(shù)b的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.圓x2+y2+6x-4y+12=0的圓心坐標(biāo)是(-3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an+n(n∈N*).
(1)求證數(shù)列{an-1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2(-an+1),求數(shù)列{$\frac{1}{_{n}_{n+2}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.${(x+\frac{1}{{\sqrt{x}}})^n}$展開式中所有奇數(shù)項(xiàng)系數(shù)之和為1024,則展開式中各項(xiàng)系數(shù)的最大值是( 。
A.790B.680C.462D.330

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求f($\frac{π}{3}$)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案