分析 (1)通過(guò)Sn=2an+n(n∈N+)與Sn-1=2an-1+n-1(n≥2)作差、變形可知an-1=2(an-1-1),進(jìn)而計(jì)算即得結(jié)論.
(2)由bn=log2(-an+1)=log22n=n.得$\frac{1}{_{n}_{n+2}}$=$\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,累加即可求解.
解答 解:(1)∵Sn=2an+n(n∈N+)
∴Sn-1=2an-1+n-1(n≥2)
兩式相減得:an=2an-1-1,
變形可得:an-1=2(an-1-1),
又∵a1=2a1+1,即a1-1=-1-2=-2,
∴數(shù)列{an-1}是首項(xiàng)為-2、公比為2的等比數(shù)列,
∴數(shù)列an-1=-2•2n-1=-2n,an=-2n+1,
(2)∵bn=log2(-an+1)=log22n=n.
∴$\frac{1}{_{n}_{n+2}}$=$\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$
∴Tn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n}-\frac{1}{n+2})$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
點(diǎn)評(píng) 本題考查了數(shù)列的遞推式,等比數(shù)列的通項(xiàng),考查了裂項(xiàng)求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 16 | C. | 12 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,3} | B. | {4,5} | C. | {1,2,3,4,5} | D. | ∅ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com