分析 把(2+x)6 按照二項式定理展開可得,(1+x+x2)(2+x)6展開式中x2項的系數(shù).
解答 解:把(2+x)6 按照二項式定理展開可得(2+x)6 =(${C}_{6}^{0}$•64+${C}_{6}^{1}$•32x+${C}_{6}^{2}$•16x2+…+${C}_{6}^{6}$•x6),
故(1+x+x2)(2+x)6=(1+x+x2)•(${C}_{6}^{0}$•64+${C}_{6}^{1}$•32x+${C}_{6}^{2}$•16x2+…+${C}_{6}^{6}$•x6),
故展開式中x2項的系數(shù)為16•${C}_{6}^{2}$+32${C}_{6}^{1}$+64=496,
故答案為:496.
點評 本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數(shù),屬于基礎題
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${A}_{5}^{2}$${A}_{2}^{2}$ | B. | ${A}_{7}^{7}$-${A}_{2}^{2}$${A}_{6}^{6}$ | ||
C. | ${A}_{7}^{7}$-${A}_{6}^{6}$ | D. | ${C}_{10}^{8}$0.820.28 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 20 | C. | 30 | D. | 42 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${(x-\frac{3}{2})^2}+{(y-\frac{3}{2})^2}=1$ | B. | ${(x-\frac{3}{2})^2}+{(y-\frac{3}{2})^2}=4$ | C. | (x-3)2+(y-3)2=1 | D. | (x-3)2+(y-3)2=2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com