已知四面體S-ABC中,SA=SB=2,且SA⊥SB,BC=
5
,AC=
3
,則該四面體的外接球的表面積為
 
考點(diǎn):球的體積和表面積,棱錐的結(jié)構(gòu)特征
專題:計(jì)算題,空間位置關(guān)系與距離,球
分析:由勾股定理可得AB,再由勾股定理的逆定理,可得AC⊥BC,取AB的中點(diǎn)O,連接OS,OC,則有直角三角形的斜邊的中線即為斜邊的一半,可得球的半徑,再由球的表面積公式即可計(jì)算得到.
解答: 解:由于SA=SB=2,且SA⊥SB,BC=
5
,AC=
3
,
則AB=
2
SA=2
2
,
由AB2=AC2+BC2,
則AC⊥BC,
取AB的中點(diǎn)O,連接OS,OC,
則OA=OB=OC=OS=
2
,
則該四面體的外接球的球心為O,則球的表面積為
S=4πr2=4π×(
2
2=8π.
故答案為:8π.
點(diǎn)評(píng):本題考查勾股定理的逆定理和直角三角形的斜邊的中線即為斜邊的一半,考查球的表面積的計(jì)算,求得球的半徑是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC為等腰三角形,PA⊥平面ABC,AB=AC=5,PA=BC=5
3
,求:
(1)點(diǎn)P到直線BC的距離;
(2)二面角B-PA-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體AC1的棱長(zhǎng)為1,連結(jié)AC1,交平面A1BD于H,有以下四個(gè)命題:
①AC1⊥平面A1BD,
②H是△A1BD的垂心,
③AH=
3
3

④直線AH和BB1所成的角為45°.
則上述命題中,是真命題的有
 
.(填命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系O-xyz中,點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的射影,則|OB|等于( 。
A、
14
B、
13
C、
10
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A′B′C′D′中,DA=DC=2,DD′=1,A′C′與B′D′相交于點(diǎn)O′,點(diǎn)P在線段BD上(點(diǎn)P與點(diǎn)B不重合).
(1)若異面直線O′P與BC′所成角的余弦值為
55
55
,求DP的長(zhǎng)度;
(2)若DP=
3
2
2
,求平面PA′C′與平面DC′B所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=1+
3
2
t
(t為參數(shù)).曲線C的極坐標(biāo)方程為ρ=2
2
sin(θ+
π
4
)
.直線l與曲線C交于A,B兩點(diǎn),與y軸交于點(diǎn) P.
(1)求曲線C的直角坐標(biāo)方程;
(2)求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

填表:寫(xiě)出程序框圖中的圖形符號(hào)的名稱.
圖形符號(hào)名  稱意        義
表示一個(gè)算法的開(kāi)始或者結(jié)束
表示算法中數(shù)據(jù)的輸入或者結(jié)果的輸出
賦值,執(zhí)行計(jì)算語(yǔ)句,傳送結(jié)果
根據(jù)給定的條件判斷.當(dāng)條件成立時(shí),程序沿“是”方向執(zhí)行,否則沿“否”方向執(zhí)行
流程進(jìn)行的方向

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線漸近線方程:y=±2x,焦點(diǎn)是F(0,±
10
),則雙曲線標(biāo)準(zhǔn)方程是(  )
A、
y2
8
-
x2
2
=1
B、
x2
8
-
y2
2
=1
C、
y2
2
-
x2
8
=1
D、
x2
2
-
y2
8
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

出下列數(shù)列{an},n∈N*
①an=n2+n+1;②an=2n+3;③an=ln
n
n+1
;④an=en-1,其中滿足性質(zhì)“對(duì)任意正整數(shù)n,an+2+an≤2an+1都成立“的數(shù)列有
 

查看答案和解析>>

同步練習(xí)冊(cè)答案