12.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,則z=2x+3y的最大值是3.

分析 如圖所示,實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,可得表示的可行域是△OAB.則z=2x+3y,化為:y=-$\frac{2}{3}$x+$\frac{z}{3}$,畫出直線系即可得出.

解答 解:如圖所示,
實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,可得表示的可行域是△OAB.
則z=2x+3y,化為:y=-$\frac{2}{3}$x+$\frac{z}{3}$,
因此當(dāng)此直線經(jīng)過點(diǎn)A(0,1)時,z=2x+3y的最大值是3.
故答案為:3.

點(diǎn)評 本題考查了線性規(guī)劃、直線方程、不等式,考查了數(shù)形結(jié)合方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過點(diǎn)A(-1,2)作曲線f(x)=x3-3x的切線,做多有( 。
A.3條B.2條C.1條D.0條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{1-a}{x}-ax+lnx(a∈R)$,g(x)=x3-2bx+3
(1)當(dāng)$0≤a<\frac{1}{2}$時,討論f(x)的單調(diào)性;
(2)當(dāng)$a=\frac{1}{4}$時,若對于任意x1∈(0,2),x2∈[1,2]均有f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=lnx-(a+1)x(a∈R)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)函數(shù)f(x)有最大值且最大值大于3a-1時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.橢圓mx2+ny2+mn=0(m<n<0)的焦點(diǎn)坐標(biāo)是( 。
A.$(0,±\sqrt{m-n})$B.$(±\sqrt{m-n},0)$C.$(0,±\sqrt{n-m})$D.$(±\sqrt{n-m},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.$\sqrt{6}$+$\sqrt{7}$與2$\sqrt{2}$+$\sqrt{5}$的大小關(guān)系為>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)等差數(shù)列{an}的前n項和為Sn,且a1=2,a3=6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的前n項和為Tn,求T2016的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知兩條直線l1:x+2ay-1=0,l2:x-4y=0,且l1⊥l2,則滿足條件a的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{1}{8}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.簡諧振動y=2sin(2x-$\frac{π}{4}$)的初相是$-\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案