分析 (1)取BC中點(diǎn)O,先證AO⊥BC,再由面面垂直的性質(zhì)定理證得AO⊥面BCC'B',再由線面垂直的判定定理即可得證;
(2)顯然M不是A′,B′,棱A′B′上若存在一點(diǎn)M,使得C′M∥平面BEF,可通過(guò)線面平行的判斷定理,即可證得;
(3)利用等體積轉(zhuǎn)化,即可求棱錐A′-BEF的體積.
解答 (1)證明:取BC中點(diǎn)O,連接AO,因?yàn)槿切蜛BC是等邊三角形,所以AO⊥BC,
又因?yàn)槠矫鍮CC′B′⊥底面ABC,AO?平面ABC,平面BCC′B′∩平面ABC=BC,
所以AO⊥平面BCC′B′,
又BB′?平面BCC′B,所以AO⊥BB′.
又BB′⊥AC,AO∩AC=A,AO?平面ABC,AC?平面ABC.
所以BB′⊥底面ABC.…(4分)
(2)解:顯然M不是A′,B′,棱A′B′上若存在一點(diǎn)M,使得C′M∥平面BEF,
過(guò)M作MN∥AA′交BE于N,連接FN,MC′,所以MN∥CF,即C′M和FN共面,
所以C′M∥FN,
所以四邊形C′MNF為平行四邊形,所以MN=2,
所以MN是梯形A′B′BE的中位線,M為A′B′的中點(diǎn).即$\frac{{{A^/}M}}{{M{B^/}}}=1$…(8分)
(3)解:${V_{{A^/}-BEF}}={V_{B-{A^/}EF}}=\frac{1}{3}×(\frac{1}{2}×1×2)×\sqrt{3}=\frac{{\sqrt{3}}}{3}$…(12分)
點(diǎn)評(píng) 本題考查線面平行和垂直的判定和性質(zhì),面面垂直的性質(zhì)定理,以及三棱錐體積的計(jì)算,考查邏輯推理能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
x | 3 | 4 | 5 | 6 |
y | 2.5 | m | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com