17.重慶八中開設(shè)6門不同的數(shù)學(xué)選修課,每位同學(xué)可以從中任選1門或2門課學(xué)習(xí),甲、乙、丙三位同學(xué)選擇的課沒(méi)有一門是相同的,則不同的選法共有1290.

分析 分類討論,利用排列組合知識(shí),即可得出結(jié)論.

解答 解:由題意,若都選1門,有A63=120種;
若有1人選2門,則有${C}_{3}^{1}{C}_{6}^{2}{A}_{4}^{2}$=540種,
若有2人選2門,則有${C}_{3}^{2}{C}_{6}^{2}{C}_{4}^{2}{C}_{2}^{1}$=540種,
若有3人選2門,則有${C}_{6}^{2}{C}_{4}^{2}$=90種,
故共有120+540+540+90=1290種,
故答案為:1290.

點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,考查排列組合知識(shí)的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若偶函數(shù)f(x),當(dāng)x∈R+時(shí),滿足f′(x)>$\frac{f(x)}{x}$,且f(1)=0,則不等式$\frac{f(x)}{x}$≥0的解集是[-1,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=sin(πx-$\frac{π}{3}}$)-1是( 。
A.周期為1的奇函數(shù)B.周期為2的偶函數(shù)
C.周期為1的非奇非偶函數(shù)D.周期為2的非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知二次函數(shù)y=f(x)的最小值等于4,且f(0)=f(2)=6.
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)-kx,且函數(shù)g(x)在區(qū)間[1,2]上是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)h(x)=f(2x),求當(dāng)x∈[-1,2]時(shí),函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若cos(π-A+B)+2sinAsinB<0,那么△ABC三邊長(zhǎng)a、b、c之間滿足的關(guān)系是( 。
A.a2+b2<c2B.b2+c2<a2C.2ab>c2D.2bc>a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ax2-(a+1)x+1.
(1)解不等式f(x)≥0;
(2)若f(x)在[1,+∞)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若不等式f(x)≥0在x∈(1,2]上恒成立,求正實(shí)數(shù)a的取值范圍;
(4)若不等式f(x)≥0在a∈[1,2]上恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;  
(2)若A⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的離心率為$\frac{\sqrt{3}}{2}$,P(m,n)為圓x2+y2=16上任意一點(diǎn),過(guò)P作橢圓的切線PA,PB,設(shè)切點(diǎn)分別為A(x1,y1),B(x2,y2).
(1)證明:切線PA的方程為$\frac{{x}_{1}x}{4}$+y1y=1;
(2)設(shè)O為坐標(biāo)原點(diǎn),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x3+ax2+bx+1,僅當(dāng)x=-1,x=1時(shí)取得極值;
(1)求a、b的值;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案