【題目】已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F是它的一個(gè)焦點(diǎn),且過(guò)P點(diǎn),當(dāng)m取最小值時(shí),雙曲線C的離心率為______.
【答案】
【解析】
由點(diǎn)坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過(guò)作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時(shí),取得最小值;利用拋物線切線的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線定義得到實(shí)軸長(zhǎng),結(jié)合焦距可求得所求的離心率.
是拋物線準(zhǔn)線上的一點(diǎn)
拋物線方程為 ,準(zhǔn)線方程為
過(guò)作準(zhǔn)線的垂線,垂足為,則
設(shè)直線的傾斜角為,則
當(dāng)取得最小值時(shí),最小,此時(shí)直線與拋物線相切
設(shè)直線的方程為,代入得:
,解得: 或
雙曲線的實(shí)軸長(zhǎng)為,焦距為
雙曲線的離心率
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查一款手機(jī)的使用時(shí)間,研究人員對(duì)該款手機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:
并對(duì)不同年齡層的市民對(duì)這款手機(jī)的購(gòu)買(mǎi)意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:
愿意購(gòu)買(mǎi)該款手機(jī) | 不愿意購(gòu)買(mǎi)該款手機(jī) | 總計(jì) | |
40歲以下 | 600 | ||
40歲以上 | 800 | 1000 | |
總計(jì) | 1200 |
(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款手機(jī)的平均使用時(shí)間;
(2)請(qǐng)將表格中的數(shù)據(jù)補(bǔ)充完整,并根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購(gòu)買(mǎi)該款手機(jī)”與“市民的年齡”有關(guān).
參考公式:,其中.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),則函數(shù)的單調(diào)遞增區(qū)間為( )
A.(0,2)B.[0,1)C.(﹣∞,1]D.(0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),若對(duì),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用計(jì)算機(jī)生成隨機(jī)數(shù)表模擬預(yù)測(cè)未來(lái)三天降雨情況,規(guī)定1,2,3表示降雨,4,5,6,7,8,9表示不降雨,根據(jù)隨機(jī)生成的10組三位數(shù):654 439 565 918 288 674 374 968 224 337,則預(yù)計(jì)未來(lái)三天僅有一天降雨的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形,,,,分別為,上的一點(diǎn),且,,將矩形卷成以,為母線的圓柱的半個(gè)側(cè)面,且,分別為圓柱的上、下底面的直徑.
(1)求證:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列對(duì)任意都有(其中、、是常數(shù)) .
(Ⅰ)當(dāng),,時(shí),求;
(Ⅱ)當(dāng),,時(shí),若,,求數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱(chēng)該數(shù)列是“封閉數(shù)列”.當(dāng),,時(shí),設(shè)是數(shù)列的前項(xiàng)和,,試問(wèn):是否存在這樣的“封閉數(shù)列”,使得對(duì)任意,都有,且.若存在,求數(shù)列的首項(xiàng)的所有取值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),若關(guān)于的不等式恒成立,求的取值范圍;
(2)當(dāng)時(shí),證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com