【題目】如圖,在正四棱錐中,,.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)證明見解析.(2)
【解析】
(1)為正四棱錐.所以為正方形,面,.
因為為正方形,所以 . ,所以面.
(2)要求二面角的余弦值,通過建立空間直角坐標系,運用向量法即可得出答案.
(1)證明:聯(lián)結(jié).
在正四棱錐中,底面.
因為平面,所以.
在正方形中,,
又因為,所以面.
(2)解:由(1)知,,,兩兩垂直,
以為坐標原點建立如圖所示空間直角坐標系.
在正方形中,因為,
所以.
又因為,
所以.
所以點的坐標為,點的坐標為,
點的坐標為.
則,.
由(1)知,平面.
所以平面的一個法向量為. 設(shè)平面的一個法向量.
則,即
令,則,.
故平面的一個法向量.
所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.
(1)求證:四邊形ACC1A1為矩形;
(2)求二面角E-B1C-A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省級示范高中高三年級對各科考試的評價指標中,有“難度系數(shù)“和“區(qū)分度“兩個指標中,難度系數(shù),區(qū)分度.
(1)某次數(shù)學(xué)考試(滿分為150分),隨機從實驗班和普通班各抽取三人,實驗班三人的成績分別為147,142,137;普通班三人的成績分別為97,102,113.通過樣本估計本次考試的區(qū)分度(精確0.01).
(2)如表表格是該校高三年級6次數(shù)學(xué)考試的統(tǒng)計數(shù)據(jù):
難度系數(shù)x | 0.64 | 0.71 | 0.74 | 0.76 | 0.77 | 0.82 |
區(qū)分度y | 0.18 | 0.23 | 0.24 | 0.24 | 0.22 | 0.15 |
①計算相關(guān)系數(shù)r,|r|<0.75時,認為相關(guān)性弱;|r|≥0.75時,認為相關(guān)性強.通過計算說明,能否利用線性回歸模型描述y與x的關(guān)系(精確到0.01).
②ti=|xi﹣0.74|(i=1,2,…,6),求出y關(guān)于t的線性回歸方程,并預(yù)測x=0.75時y的值(精確到0.01).
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù)r,回歸直線的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點的直線交拋物線于、兩點,線段的中點的橫坐標為,.
(1)求拋物線的方程;
(2)已知點,過點作直線交拋物線于、兩點,求的最大值,并求取得最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線的準線上一點,F為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶節(jié)期間,滕州市實驗小學(xué)舉行了一次科普知識競賽活動,設(shè)置了一等獎、二等獎、三等獎、四等獎及紀念獎,獲獎人數(shù)的分配情況如圖所示,各個獎品的單價分別為:一等獎50元、二等獎20元、三等獎10元,四等獎5元,紀念獎2元,則以下說法中不正確的是( )
A.獲紀念獎的人數(shù)最多B.各個獎項中二等獎的總費用最高
C.購買獎品的費用平均數(shù)為6.65元D.購買獎品的費用中位數(shù)為5元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市組織高三全體學(xué)生參加計算機操作比賽,等級分為1至10分,隨機調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如下:
B校樣本數(shù)據(jù)統(tǒng)計表:
成績(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù)(個) | 0 | 0 | 0 | 9 | 12 | 21 | 9 | 6 | 3 | 0 |
(1)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進行比較.
(2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)當m=1時,求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com