3.已知數(shù)列{an}中,a1=1,a2=2,且an+1=4an-3an-1(n∈N*,n≥2).
(Ⅰ)令bn=an+1-an,求證:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)求an

分析 (Ⅰ)對(duì)任意的n∈N*,n≥2,由an+1=4an-3an-1,變形an+1-an=3an-3an-1=3(an-an-1),令bn=an+1-an,代入即可證明.
(II)由(Ⅰ)可知${b_n}={b_1}×{q^{n-1}}={3^{n-1}}$,當(dāng)n=1時(shí),a1=1,當(dāng)n≥2時(shí),${a_n}-{a_{n-1}}={b_{n-1}}={3^{n-2}}$,利用“累加求和”方法即可得出.

解答 (Ⅰ)證明:對(duì)任意的n∈N*,n≥2,∵an+1=4an-3an-1,
∴an+1-an=3an-3an-1=3(an-an-1),
令bn=an+1-an,顯然bn=an+1-an≠0,則$\frac{b_n}{{{b_{n-1}}}}=\frac{{{a_{n+1}}-{a_n}}}{{{a_n}-{a_{n-1}}}}=3$,
∴數(shù)列{bn}是首項(xiàng)為b1=a2-a1=1,公比q為3的等比數(shù)列.
(Ⅱ)解:由(Ⅰ)可知${b_n}={b_1}×{q^{n-1}}={3^{n-1}}$,
∴當(dāng)n=1時(shí),a1=1,
當(dāng)n≥2時(shí),a2-a1=b1=1,${a_3}-{a_2}={b_2}={3^1}$,${a_3}-{a_2}={b_2}={3^2}$,…${a_n}-{a_{n-1}}={b_{n-1}}={3^{n-2}}$,
累加得${a_n}-{a_1}=1+{3^1}+{3^2}+…+{3^{n-2}}=\frac{{{3^{n-1}}-1}}{2}$,
${a_n}=1+\frac{{{3^{n-1}}-1}}{2}=\frac{{{3^{n-1}}+1}}{2}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式、“累加求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點(diǎn)P是拋物線y2=4x上的點(diǎn),且P到該拋物線的焦點(diǎn)的距離為3,則P到原點(diǎn)的距離為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,下列四個(gè)結(jié)論中正確的是(  )
①$\overrightarrow{AB}$+$\overrightarrow{BC}$>$\overrightarrow{AC}$
②$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$
③|${\overrightarrow{AB}}$|+|${\overrightarrow{BC}}$|>|${\overrightarrow{AC}}$|
④|${\overrightarrow{AB}}$|+|${\overrightarrow{BC}}$|=|${\overrightarrow{AC}}$|.
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足log2an-log2an-1=1n∈N*,n≥2,且a4=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整數(shù)m,n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請(qǐng)說明理由.
(Ⅲ)令cn=$\frac{2n+4}{{n(n+1){a_n}}}$,記數(shù)列{cn}的前n項(xiàng)和為Sn,其中n∈N*,證明:$\frac{3}{2}$≤Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知tanα,tanβ是方程x2-3$\sqrt{3}$x+4=0的兩個(gè)根,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),則tan(α+β)=-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.不等式$\frac{{{x^2}+2x-3}}{{-{x^2}+x+6}}$≥0的解集為[-3,-2)∪[1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若z=$\frac{2i}{-1+i}$,則復(fù)數(shù)z的虛部為(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知漸近線方程為y=±$\frac{2}{3}$x且經(jīng)過P(${\sqrt{6}$,2),求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點(diǎn)A(x1,y1),D(x2,y2)(其中x1<x2)是曲線y2=4x(y≥0)上的兩點(diǎn),A,D兩點(diǎn)在x軸上的射影分別為點(diǎn)B,C,且|BC|=2.
(Ⅰ)當(dāng)點(diǎn)B的坐標(biāo)為(1,0)時(shí),求直線AD的斜率;
(Ⅱ)記△OAD的面積為S1,梯形ABCD的面積為S2,求證:$\frac{S_1}{S_2}$<$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案