13.已知點(diǎn)P是拋物線y2=4x上的點(diǎn),且P到該拋物線的焦點(diǎn)的距離為3,則P到原點(diǎn)的距離為2$\sqrt{3}$.

分析 利用拋物線的性質(zhì)求出P點(diǎn)坐標(biāo),再計(jì)算P到原點(diǎn)的距離.

解答 解:拋物線的準(zhǔn)線方程為x=-1,
∵P到焦點(diǎn)的距離為3,∴xP+1=3,即xP=2.
∴P點(diǎn)坐標(biāo)為(2,2$\sqrt{2}$)或(2,-2$\sqrt{2}$).
∴P到原點(diǎn)的距離d=$\sqrt{4+8}$=2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了拋物線的性質(zhì),兩點(diǎn)間的距離公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正項(xiàng)數(shù)列{an}滿足a1=1,an2=2an-12+1;
(1)求證:{an2+1}是等比數(shù)列;
(2)令bn=$\frac{2^n}{{{a_n}+{a_{n+1}}}}$,且數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn•(Sn+2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為測(cè)得河對(duì)岸塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測(cè)得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10m到位置D,測(cè)得∠BDC=45°,則塔AB的高是( 。
A.10 mB.10$\sqrt{2}$ mC.10$\sqrt{3}$ mD.10$\sqrt{6}$ m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列$\frac{1}{3},\frac{3}{5},\frac{5}{8},\frac{7}{12},\frac{9}{17}…$的第6項(xiàng)為$\frac{11}{23}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:y2=2px(p>0),焦點(diǎn)F,O為坐標(biāo)原點(diǎn),直線AB(不垂直x軸)過點(diǎn)F且與拋物線C交于A,B兩點(diǎn),直線OA與OB的斜率之積為-p.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若M為線段AB的中點(diǎn),射線OM交拋物線C于點(diǎn)D,求證:$\frac{{|{OD}|}}{{|{OM}|}}>2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.曲線$y=\frac{2}{x}$在點(diǎn)P(1,2)處的切線方程是(  )
A.2x+y-4=0B.$y-2=-\frac{2}{x^2}(x-1)$C.$y-2=\frac{1}{x^2}(x-1)$D.x+2y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C1:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)F″與F關(guān)于x軸對(duì)稱,直線l:y=2與拋物線C1相交于A,B兩點(diǎn),與y軸相交于M點(diǎn),且$\overrightarrow{F″A}$•$\overrightarrow{FB}$=-5.
(1)求拋物線C1的方程;
(2)若以F″,F(xiàn)為焦點(diǎn)的橢圓C2過點(diǎn)($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{2}}{2}$).
①求橢圓C2的方程;
②過點(diǎn)F的直線與橢圓C2相交于P,Q兩點(diǎn),且$\overrightarrow{PF}$=2$\overrightarrow{FQ}$,求|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a=3$\sqrt{3}$,b=3,A=$\frac{π}{3}$,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}中,a1=1,a2=2,且an+1=4an-3an-1(n∈N*,n≥2).
(Ⅰ)令bn=an+1-an,求證:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)求an

查看答案和解析>>

同步練習(xí)冊(cè)答案