分析 (1)設(shè)$f(x)=sinx-\frac{2}{π}x$,則f′(x)=cosx-$\frac{2}{π}$x,結(jié)合函數(shù)y=cosx的單調(diào)性,即可證明,即$sinx≥\frac{2}{π}x$.令$x=\frac{π}{a_n}$,顯然$x=\frac{π}{a_n}∈[{0,\frac{π}{2}}]$,即可得出.
(2)由于anan+1≥6,可得$\frac{π}{{{a_n}{a_{n+1}}}}∈({0,\frac{π}{2}})$,由(1)知$sin\frac{π}{{{a_n}{a_{n+1}}}}>\frac{2}{{{a_n}{a_{n+1}}}}$,再利用“裂項求和”即可得出.
解答 證明:(1)設(shè)$f(x)=sinx-\frac{2}{π}x$,則f′(x)=cosx-$\frac{2}{π}$x,
結(jié)合函數(shù)y=cosx的單調(diào)性,知$?{x_0}∈({0,\frac{π}{2}})$,函數(shù)f(x)在區(qū)間(0,x0)上遞增,在$({{x_0},\frac{π}{2}})$上遞減,又$f(0)=f({\frac{π}{2}})=0$,
因此在$[{0,\frac{π}{2}}]$上,恒有f(x)≥0,即$sinx≥\frac{2}{π}x$.
令$x=\frac{π}{a_n}$,顯然$x=\frac{π}{a_n}∈[{0,\frac{π}{2}}]$,故$sin\frac{π}{a_n}≥\frac{2}{a_n}$.
(2)∵anan+1≥6,∴$\frac{π}{{{a_n}{a_{n+1}}}}∈({0,\frac{π}{2}})$,
由(1)知$sin\frac{π}{{{a_n}{a_{n+1}}}}>\frac{2}{{{a_n}{a_{n+1}}}}$,
∴${S_n}>2({\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{{({n+1})(n+2)}}})$,
=$2({\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}})=2({\frac{1}{2}-\frac{1}{n+2}})>\frac{1}{3}$.
設(shè)$g(x)=sinx-x(0<x<\frac{π}{2})$,則g′(x)=cosx-1<0,∴函數(shù)g(x)在$({0,\frac{π}{2}})$單調(diào)遞減.
∴g(x)<g(0)=0,即當(dāng)$x∈({0,\frac{π}{2}})時,恒有sinx<x$.
∴${S_n}<π({\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{{({n+1})({n+2})}}})=π({\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}})$
=$π({\frac{1}{2}-\frac{1}{n+2}})<\frac{π}{2}$.
∴$\frac{1}{3}<{S_n}<\frac{π}{2}$.
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、“裂項求和”方法、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,8} | B. | ∅ | C. | {5,7,8} | D. | {2,5,7,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤0或a>4 | B. | 0≤a<4 | C. | 0<a<4 | D. | 0≤a≤4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{3}{4}$) | B. | [-$\frac{1}{2}$,$\frac{3}{4}$) | C. | (-$\frac{1}{2}$,0)∪(0,+∞) | D. | (-∞,$\frac{1}{2}$]∪[$\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com