6.某高中要從該校三個年級中各選取1名學(xué)生參加校外的一項知識問答活動,若高一、高二、高三年級分別有5,6,8個學(xué)生備選,則不同選法有( 。
A.19種B.38種C.120種D.240種

分析 利用分步計數(shù)原理展開求解即可.

解答 解:每一個年級選擇一名學(xué)生為一步,共三步完成,由分步計數(shù)原理得5×6×8=240種,
故選:D

點評 本題考查簡單計數(shù)原理的應(yīng)用,是容易題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.圓ρ=4cos θ的圓心到直線tan($θ+\frac{π}{2}$)=1的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,A,B,C是圓O上不共線的三點,OD⊥AB于D,BC和AC分別交DO的延長線于P和Q,求證:∠OBP=∠CQP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.(x-$\frac{1}{2x}$)8的展開式中常數(shù)為( 。
A.$\frac{1}{2}$B.$\frac{35}{8}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若三條線段的長度分別為4、6、8,則用這三條線段( 。
A.能組成鈍角三角形B.能組成銳角三角形
C.能組成直角三角形D.不能組成三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求cos<$\overrightarrow{AB},\overrightarrow{AC}$>;
(2)求以AB,AC為邊的平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x∈(0,+∞),觀察下列各式:$x+\frac{1}{x}>2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}≥3,x+\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}≥4,…$類比得$x+\frac{a}{x^n}≥n+1({n∈{N^*}})$,則a=nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合M={(x,y)|y=f(x)},若對于任意實數(shù)對(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱集合M具有∟性,給出下列四個集合:
①M={(x,y)|y=x3-2x2+3};      ②M={(x,y)|y=log2(2-x)};
③M={(x,y)|y=2-2x};          ④M={(x,y)|y=1-sinx};
其中具有∟性的集合的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圓x2+y2-2x+4y-3=0上到直線x+y+3=0的距離為$\frac{{\sqrt{2}}}{2}$的點的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案