A. | e1+e2=2$\sqrt{3}$ | B. | e1-e2=2 | C. | e1e2=2 | D. | $\frac{e_2}{e_1}>2$ |
分析 利用橢圓、雙曲線的定義,結(jié)合離心率公式,分別求出橢圓和雙曲線的離心率,即可得出結(jié)論.
解答 解:設(shè)正三角形的邊長為m,則
橢圓中焦距2c=AB=m,2a=DA+DB=$\frac{m}{2}+\frac{\sqrt{3}}{2}m$
∴橢圓的離心率e1=$\sqrt{3}$-1;
雙曲線中2c′=AB=m,2a′=DB-DA=$\frac{\sqrt{3}-1}{2}$m,
∴雙曲線的離心率e2=$\sqrt{3}$+1,
∴e2+e1=2$\sqrt{3}$,e2e1=2,$\frac{{e}_{2}}{{e}_{1}}$>2.
故選B.
點評 本題考查橢圓、雙曲線的定義,考查橢圓、雙曲線的離心率,正確運用定義是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1] | B. | [2,3] | C. | [-2,2] | D. | [-1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2-5x+6=0,則x=2”的逆否命題是“若x≠2,則x2-5x+6≠0” | |
B. | 對命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,x2+x+1≥0 | |
C. | 若x,y∈R,則“x=y”是“xy≥($\frac{x+y}{2}$)2中等號成立”的充要條件 | |
D. | 已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ | |
B. | 如果平面α與平面β不垂直也不重合,那么平面α內(nèi)一定存在直線平行于平面β | |
C. | 如果平面α⊥平面β,那么平面α內(nèi)一定存在直線不垂直于平面β | |
D. | 如果平面α⊥平面β,那么平面α內(nèi)的所有直線都垂直于平面β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com