11.已知圓的一般方程為x2+y2-2x+4y=0,則該圓的半徑長為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

分析 利用配方法化圓的一般方程為標(biāo)準(zhǔn)方程,從而求得圓的圓心坐標(biāo)和半徑.

解答 解:由x2+y2-2x+4y=0,配方得(x-1)2+(y+2)2=5.
∴y圓的圓心坐標(biāo)為C(1,-2),半徑為$\sqrt{5}$,
故選B.

點(diǎn)評(píng) 本題考查圓的一般方程化標(biāo)準(zhǔn)方程,考查配方法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若空間向量$\overrightarrow a,\overrightarrow b$滿足:$(\overrightarrow a+\overrightarrow b)⊥(2\overrightarrow a-\overrightarrow b)$,$(\overrightarrow a-2\overrightarrow b)⊥(2\overrightarrow a+\overrightarrow b)$,則cos<$\overrightarrow a,\overrightarrow b>$=$-\frac{{\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=$\frac{{x}^{2}}{{e}^{x}}$的單調(diào)遞增區(qū)間為[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知m為實(shí)數(shù),函數(shù)f(x)=$\frac{2m}{3}$x3-2m2x2+$\frac{3}{2}$x2-6mx+1
(Ⅰ)當(dāng)m=1時(shí),求f(x)過點(diǎn)(1,f(1))的切線方程
(Ⅱ)若曲線y=f(x)與直線y=10的圖象恰有三個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且S3=7,a1+3,a3+4的等差中項(xiàng)為3a2
(1)求a2;
(2)若{an}是等比數(shù)列,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線一焦點(diǎn)坐標(biāo)為(5,0),一漸近線方程為3x-4y=0,則雙曲線離心率為( 。
A.$\frac{25\sqrt{5}}{4}$B.$\frac{5\sqrt{7}}{2}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線C:y2=-4x.
(Ⅰ)寫出拋物線C的焦點(diǎn)坐標(biāo)、準(zhǔn)線方程、焦點(diǎn)到準(zhǔn)線的距離;
(Ⅱ)直線l過定點(diǎn)P(1,2),斜率為k,當(dāng)k為何值時(shí),直線l與拋物線:只有一個(gè)公共點(diǎn);兩個(gè)公共點(diǎn);沒有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.四棱錐P-ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB=$\sqrt{5}$,BC=CD=$\sqrt{2}$,AD=1.
(1)求異面直線AB、PC所成角的余弦值;
(2)點(diǎn)E是線段AB的中點(diǎn),求二面角E-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知Rt△ABC,兩直角邊AB=1,AC=2,D是△ABC內(nèi)一點(diǎn),且∠DAB=60°,設(shè)$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(λ,μ∈R),則$\frac{λ}{μ}$=( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.3D.$2\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案