(滿分12分)設(shè)是拋物線p>0)的內(nèi)接正三角形(為坐標(biāo)原點(diǎn)),其面積為;點(diǎn)M是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)M作拋物線的切線MPMQ,P、Q為切點(diǎn).
(1)求拋物線的方程;
(2)直線PQ是否過(guò)定點(diǎn),若過(guò)定點(diǎn)求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由;
(3)求MPQ面積的最小值及相應(yīng)的直線PQ的方程.
(1); (2)直線PQ過(guò)定點(diǎn)
(3)
,MPQ面積有最小值.此時(shí)直線PQ的方程是:..
本試題主要是考查了拋物線的方程的求解,以及直線方程的求解,和三角形面積的最值的求解的綜合運(yùn)用。
(1)利用其性質(zhì)得到拋物線的方程;
(2)假設(shè)直線PQ過(guò)定點(diǎn),那么分析其方程的特點(diǎn)發(fā)現(xiàn)結(jié)論。
(3)結(jié)合三角形的面積公式,而控制得到直線與拋物線聯(lián)立方程組的思想表示弦長(zhǎng),然后得到求解。
解:(1).因?yàn)檎?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222051985516.png" style="vertical-align:middle;" />面積是,設(shè)邊長(zhǎng)為,
................................1'
又設(shè),,
,
,所以點(diǎn)A,B關(guān)于軸對(duì)稱,..............2'
于是令可得,拋物線方程是:;....................4'
(2).設(shè),切點(diǎn),則切線MP:,MQ:,相較于M,所以,可得直線PQ的方程:
當(dāng)時(shí),無(wú)關(guān),所以直線PQ過(guò)定點(diǎn);.....................8'
(3). 設(shè),由(2)知直線PQ的方程是:,
,
,.............10'
又點(diǎn)M到直線PQ的距離為
所以....12'
,MPQ面積有最小值.此時(shí)直線PQ的方程是:..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn).
為坐標(biāo)原點(diǎn),求證:;
②設(shè)點(diǎn)在線段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,求四邊形面積的最小值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().
(1) 當(dāng)時(shí),試寫(xiě)出拋物線上的三個(gè)定點(diǎn)、的坐標(biāo),從而使得

(2)當(dāng)時(shí),若
求證:;
(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:
“若,則.”
開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P是拋物線上的點(diǎn),設(shè)點(diǎn)P到拋物線準(zhǔn)線的距離為,到圓上一動(dòng)點(diǎn)Q的距離為的最小值是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)直線上的動(dòng)點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
⑴若切線的斜率分別為,求證:為定值;
⑵求證:直線恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一平面直角坐標(biāo)系下,下列曲線中,其右焦點(diǎn)與拋物線y2 =4x的焦點(diǎn)重合的是
A.B.
C.D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知為拋物線上不同兩點(diǎn),且直線傾斜角為銳角,為拋物線焦點(diǎn),若 則直線斜率為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

長(zhǎng)度為的線段AB的兩個(gè)端點(diǎn)A、B都在拋物線上滑動(dòng),則線段AB的中點(diǎn)M到軸的最短距離是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的準(zhǔn)線方程是y=2,則實(shí)數(shù)a的值為(    ).
A.8B.-8C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案