15.設(shè)f(x)=asin2x+bcos2x,且滿足a,b∈R,ab≠0,且f($\frac{π}{6}-x$)=f($\frac{π}{6}+x$),則下列說(shuō)法正確的是(  )
A.|f($\frac{7π}{10}$)|<|f($\frac{π}{5}$)|
B.f(x)是奇函數(shù)
C.f(x)的單調(diào)遞增區(qū)間是[k$π+\frac{π}{6},kπ+\frac{2}{3}π$](k∈Z)
D.a=$\sqrt{3}$b

分析 由條件利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,由于θ的值不確定,故A、B、C不能確定正確,利用正弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.

解答 解:∵f(x)=asin2x+bcos2x=$\sqrt{{a}^{2}{+b}^{2}}$sin(2x+θ),且滿足a,b∈R,ab≠0,
sinθ=$\frac{\sqrt{{a}^{2}{+b}^{2}}}$,cosθ=$\frac{a}{\sqrt{{a}^{2}{+b}^{2}}}$,
由于θ的值不確定,故A、B、C不能確定正確.
∵f($\frac{π}{6}-x$)=f($\frac{π}{6}+x$),∴f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱,
∴令x=$\frac{π}{6}$,可得f(0)=f($\frac{π}{3}$),即b=$\frac{\sqrt{3}}{2}$a-$\frac{2}$,求得a=$\sqrt{3}$b,
故選:D.

點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的奇偶性、單調(diào)性,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f1(x)=$\frac{x}{x+3}$,(x>0),對(duì)于n∈N*,定義fn+1(x)=f1[fn(x)],則函數(shù)fn(x)的值域?yàn)椋?,$\frac{2}{{3}^{n}-1}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.為響應(yīng)國(guó)家擴(kuò)大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)x萬(wàn)件與年促銷費(fèi)用t(t≥0)萬(wàn)元滿足x=4-$\frac{k}{2t+1}$(k為常數(shù)).如果不搞促銷活動(dòng),則該產(chǎn)品的年銷量只能是1萬(wàn)件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入12萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均生產(chǎn)投入成本的1.5倍(生產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).
(1)求常數(shù)k,并將該廠家2016年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為年促銷費(fèi)用t萬(wàn)元的函數(shù);
(2)該廠家2016年的年促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+4π)=f(x)+f(2π)成立,那么函數(shù)f(x)可能是(  )
A.f(x)=2sin$\frac{1}{2}$xB.f(x)=2cos2$\frac{1}{4}$xC.f(x)=2cos2$\frac{1}{2}$xD.f(x)=2cos$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知向量$\overrightarrow{a}$=(cosx,cosx),$\overrightarrow$=(sinx,-cosx),記函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$+1,其中x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的圖象的對(duì)稱中心的坐標(biāo);
(Ⅱ)若α∈(0,$\frac{π}{2}$),且f($\frac{α}{2}$)=$\frac{2}{3}$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知直線l1:(m+3)x+(m-1)y-5=0與l2:(m-1)x+(3m+9)y-1=互相垂直,則實(shí)數(shù)m的值為1或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.兩個(gè)變量y與x的回歸模型中,分別選擇了4個(gè)不同模型,它們的相關(guān)指數(shù)R2如下,其中擬合效果最好的模型是( 。
A.模型1的相關(guān)指數(shù)R2為0.25B.模型2的相關(guān)指數(shù)R2為0.50
C.模型3的相關(guān)指數(shù)R2為0.80D.模型4的相關(guān)指數(shù)R2為0.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.從1,2,3,4中任取2個(gè)不同的數(shù),則取出的2個(gè)數(shù)都是偶數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知等差數(shù)列{an}的公差d≠0,{an}中的部分項(xiàng)組成的數(shù)列a${\;}_{{k}_{1}}$,a${\;}_{{k}_{2}}$,a${\;}_{{k}_{3}}$,…,a${\;}_{{k}_{n}}$,…恰好為等比數(shù)列,其中k1=3,k2=5,k3=17,求數(shù)列{kn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案