【題目】以下四個命題:①設(shè),則的充要條件;②已知命題、滿足“”真,“”也真,則“”假;③若,則使得恒成立的的取值范圍為{};④將邊長為的正方形沿對角線折起,使得,則三棱錐的體積為.其中真命題的序號為________.

【答案】①③④

【解析】

①中,根據(jù)對數(shù)函數(shù)的運算性質(zhì),即可判定;②中,根據(jù)復合命題的真假判定方法,即可判定;③中,令,轉(zhuǎn)化為恒成立,即可求解;④中,根據(jù)幾何體的結(jié)構(gòu)特征和椎體的體積公式,即可求解.

由題意,①中,當,根據(jù)對數(shù)函數(shù)的運算性質(zhì),可得,

反證,當時,可得,所以“”是“”成立的充要條件,所以是正確的;

②中,若命題““”真”,可得命題中至少有一個是真命題,當為真命題,則假命題,此時若”真,則命題為真命題,所以真命題,所以不正確;

③中,令,則不等式恒成立轉(zhuǎn)化為恒成立,

則滿足,即,解得,所以是正確的;

④中,如圖所示,OAC的中點,連接DOBO,

都是等腰直角三角形,,

其中也是等腰直角三角形,平面,

為三棱錐的高,且

所以三棱錐的體積為,所以是正確的,

綜上可知真命題的序號為①③④

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點;

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽線,“”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,長軸長是短軸長的2倍.

(1)求橢圓的方程;

(2)設(shè)直線經(jīng)過點且與橢圓相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面與平面平行的充分條件可以是(

A.內(nèi)有無窮多條直線都與平行

B.直線,且直線a不在內(nèi),也不在內(nèi)

C.直線,直線,且,

D.內(nèi)的任何一條直線都與平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線的焦點為,過且斜率為的直線交于,兩點,

(1)求的方程;

(2)求過點,且與的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為,

(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

2)估計該公司投入4萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

1

3

4

7

表中的數(shù)據(jù)顯示,xy之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入上表的空白欄,并計算y關(guān)于x的回歸方程.

回歸直線的斜率和截距的最小二乘法估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的極小值為0,求的值;

(2),求證:.

查看答案和解析>>

同步練習冊答案