分析 (Ⅰ)根據(jù)兩角和的正弦公式和正弦定理即可求出AB.
(Ⅱ)根據(jù)正弦定理求出BC=2$\sqrt{3}$,再根據(jù)三角形的面積公式求出CD=$\frac{3}{4}$BC=$\frac{3\sqrt{3}}{2}$,再分別根據(jù)余弦定理和正弦定理即可求出.
解答 解:(Ⅰ)∵AC=2,A=120°,cosB=$\sqrt{3}$sinC.
∴cos(60°-C)=$\sqrt{3}$sinC,可得:$\frac{1}{2}$cosC+$\frac{\sqrt{3}}{2}$sinC=$\sqrt{3}$sinC,
∴sin(C-30°)=0,
∴C=30°,B=180°-A-C=30°,
又∵$\frac{AC}{sinB}=\frac{AB}{sinC}$,
∴AB=$\frac{AC•sinC}{sinB}$=$\frac{2×\frac{1}{2}}{\frac{1}{2}}$=2.
(Ⅱ)∵AB=AC=2,A=120°,
∴B=C=30°,
∴$\frac{BC}{sinA}$=$\frac{AC}{sinB}$,
∴BC=$\frac{2×\frac{\sqrt{3}}{2}}{\frac{1}{2}}$=2$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}$×2×2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∵S△ACD=$\frac{3\sqrt{3}}{4}$,
∴CD=$\frac{3}{4}$BC=$\frac{3\sqrt{3}}{2}$
由余弦定理可得AD2=AC2+CD2-2AD•CDcosC4+$\frac{27}{4}$-2×2×$\frac{3\sqrt{3}}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{7}{4}$,
∴AD=$\frac{\sqrt{7}}{2}$,
由正弦定理可得$\frac{AC}{sin∠ADC}$=$\frac{AD}{sinC}$,
∴sin∠ADC=$\frac{2×\frac{1}{2}}{\frac{\sqrt{7}}{2}}$=$\frac{2\sqrt{7}}{7}$.
點(diǎn)評(píng) 本題考查了正弦定理和余弦定理和三角形的面積公式,考查了學(xué)生的運(yùn)算能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2和1 | B. | 2和0 | C. | 2和-1 | D. | 2和-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x>0,總有(x+1)ex≤1 | B. | ?x≤0,總有(x+1)ex≤1 | ||
C. | ?x0≤0,總有(x0+1)${e}^{{x}_{0}}$≤1 | D. | ?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 5 | 8 | 8 | 10 | 14 | 15 | 17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 可能為銳角三角形 | B. | 一定不是銳角三角形 | ||
C. | 一定為鈍角三角形 | D. | 不可能為鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
得禽流感 | 不得禽流感 | 總計(jì) | |
服藥 | 5 | 45 | 50 |
不服藥 | 14 | 36 | 50 |
總計(jì) | 19 | 81 | 100 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com