6.設(shè)集合A={x|log2(x+1)<2},B={y|y=$\sqrt{16-{2}^{x}}$},則(∁RA)∩B=( 。
A.(0,3)B.[0,4]C.[3,4)D.(-1,3)

分析 求出集合的等價條件,根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:A={x|log2(x+1)<2}={x|0<x+1<4}={x|-1<x<3},
則∁RA={x|x≥3或x≤-1},
B={y|y=$\sqrt{16-{2}^{x}}$}={y|0≤y<4},
則(∁RA)∩B={x|3≤x<4}=[3,4),
故選:C.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,求出集合的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列{an}的公差為2,若a2,a4,a8成等比數(shù)列,設(shè)Sn是數(shù)列{an}的前n項和,則S10的值為( 。
A.110B.90C.55D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD中,PD⊥底面ABCD,且底面ABCD為平行四邊形,若∠DAB=60°,AB=2,AD=1.
(1)求證:PA⊥BD;
(2)若∠PCD=45°,求點(diǎn)D到平面PBC的距離h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)=cos2x+asinx-$\frac{a}{4}$-$\frac{1}{2}$(0≤x≤$\frac{π}{2}$),其中a>0.
(1)用a表示f(x)的最大值M(a);
(2)當(dāng)M(a)=2時,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$x2-2aln x+(a-2)x,a∈R.
(1)當(dāng)a=1時,求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)是否存在實(shí)數(shù)a,對任意的x1,x2∈(0,+∞)且x1≠x2有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=4ex(x+1)-k($\frac{2}{3}$x3+2x2),若x=-2是函數(shù)f(x)的唯一一個極值點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-2e,e]B.[0,2e]C.(-∞,-e)∪[e,2e]D.(-∞,-e)∪[0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3x+5,(x<1)}\\{lo{g}_{\frac{1}{2}}x-1,(x≥1)}\end{array}\right.$,則f(f(2$\sqrt{2}$))=-$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某班主任對班級90名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,結(jié)合數(shù)據(jù)建立了下列列聯(lián)表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)少總計
喜歡玩電腦游戲103545
不喜歡玩玩電腦游戲73845
總計177390
利用獨(dú)立性檢驗(yàn)估計,你認(rèn)為推斷喜歡電腦游戲與認(rèn)為作業(yè)多少有關(guān)系錯誤的概率介于(  )
(觀測值表如下)
P(K2≥k00.500.400.250.15
k00.4550.7081.3232.072
A.0.15~0.25B.0.4~0.5C.0.5~0.6D.0.75~0.85

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(2x-1)2+5x
(1)求f′(x)
(2)求曲線y=f(x)在點(diǎn)(2,19)處的切線方程.

查看答案和解析>>

同步練習(xí)冊答案