A. | f(a)+f(b)≤0 | B. | f(a)+f(b)≥0 | C. | f(a)-f(b)≤0 | D. | f(a)-f(b)≥0 |
分析 求解函數(shù)f(x)的定義域,判斷其奇偶性和單調(diào)性,利用奇偶性和單調(diào)性可得答案.
解答 解:設(shè)$f(x)={x^3}+{log_2}(x+\sqrt{{x^2}+1})$,其定義域為R,
$f(-x)={-x^3}+{log_2}(-x+\sqrt{{x^2}+1})$=$-{x}^{3}-lo{g}_{2}(x+\sqrt{{x}^{2}+1})$=-f(x),
∴函數(shù)f(x)是奇函數(shù).且在(0,+∞)上單調(diào)遞增,
故函數(shù)f(x)在R上是單調(diào)遞增,
那么:a+b≥0,即a≥-b,
∴f(a)≥f(-b),
得f(a)≥-f(b),
可得:f(a)+f(b)≥0.
故選:B.
點評 本題考查了函數(shù)的奇偶性和單調(diào)性的判斷及其運用能力.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值 | B. | 最小值 | C. | 沒有最大值 | D. | 沒有最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | a |
A. | 3 | B. | 3.15 | C. | 3.5 | D. | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | $4\sqrt{3}$ | D. | $8\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com