分析 (1)通過(guò)討論x的范圍,得到關(guān)于x的不等式組,求出每個(gè)不等式組的解集,再取并集即得所求.
(2)原命題等價(jià)于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范圍.
解答 解:(1)當(dāng)a=-3時(shí),f(x)≥3 即|x-3|+|x-2|≥3,
即①$\left\{\begin{array}{l}{x≤2}\\{3-x+2-x≥3}\end{array}\right.$,或②$\left\{\begin{array}{l}{2<x<3}\\{3-x+x-2≥3}\end{array}\right.$,或③$\left\{\begin{array}{l}{x≥3}\\{x-3+x-2≥3}\end{array}\right.$;
解①可得x≤1,解②可得x∈∅,解③可得x≥4.
把①、②、③的解集取并集可得不等式的解集為 {x|x≤1或x≥4}.
(2)原命題即f(x)≤|x-4|在[1,2]上恒成立,等價(jià)于|x+a|+2-x≤4-x在[1,2]上恒成立,
等價(jià)于|x+a|≤2,等價(jià)于-2≤x+a≤2,-2-x≤a≤2-x在[1,2]上恒成立.
故當(dāng) 1≤x≤2時(shí),-2-x的最大值為-2-1=-3,2-x的最小值為0,
故a的取值范圍為[-3,0].
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,關(guān)鍵是去掉絕對(duì)值,化為與之等價(jià)的不等式組來(lái)解,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若命題p:?x0∈R,x${\;}_{0}^{2}$-x0+1<0,則¬p:?x∉R,x2-x+1≥0 | |
B. | 命題“若x=y,則cosx=cosy”的逆否命題為真命題 | |
C. | 已知相關(guān)變量(x,y)滿足線性回歸方程$\widehat{y}$=2-3x,若變量x增加一個(gè)單位,則y平均增加3個(gè)單位 | |
D. | 已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
日期 | 7月15日 | 8月15日 | 9月15日 | 10月15日 | 11月15日 | 12月15日 |
攝氏溫度x(℃) | 36 | 35 | 30 | 24 | 18 | 8 |
飲料杯數(shù)y | 27 | 29 | 24 | 18 | 15 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com