【題目】如圖,在四棱錐中,底面是平行四邊形,,,為的中點,平面且,為的中點.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)連接,證得是的中點.根據(jù)中位線證得,由此證得平面.
(2)以為原點,分別為軸建立空間直角坐標系,利用直線的方向向量和平面的法向量,計算出直線與平面所成角的正弦值.
(1)連接,由于是的中點,而四邊形是平行四邊形,所以是的中點.由于是的中點,所以在三角形中,是中位線,所以.因為平面,平面,所以平面.
(2)由于底面是平行四邊形,,,所以三角形是等邊三角形,所以,所以四邊形是菱形,對角線相互垂直平分.由于平面,所以.以為原點,分別為軸建立空間直角坐標系.則.所以,平面的法向量為.設直線與平面所成角為,則.所以直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知(是虛數(shù)單位)是關于的方程的根,、,求的值;
(2)已知(是虛數(shù)單位)是關于的方程的一個根,、,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
若,求的單調(diào)區(qū)間;
是否存在實數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題的說法正確的是( )
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.命題“若x=y,則sin x=sin y”的逆否命題為真命題
D.命題“x0∈R使得”的否定是“x∈R,均有x2+x+1<0”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐的展開圖如圖二,其中四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(1)證明:平面平面;
(2)若是的中點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線:(為參數(shù))和定點,是曲線的左、右焦點,以原點為極點,以軸的非負半軸為極軸且取相同單位長度建立極坐標系.
(1)求直線的極坐標方程;
(2)經(jīng)過點且與直線垂直的直線交曲線于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四邊形為矩形, ,為的中點,將沿折起,得到四棱錐,設的中點為,在翻折過程中,得到如下有三個命題:
①平面,且的長度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個位置,使得.
其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,.
(1)求圓的圓心坐標;
(2)求線段的中點的軌跡的方程;
(3)是否存在實數(shù),使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com