【題目】已知四邊形為矩形, ,為的中點,將沿折起,得到四棱錐,設(shè)的中點為,在翻折過程中,得到如下有三個命題:
①平面,且的長度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個位置,使得.
其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)
【答案】①②
【解析】
取的中點,連接、,證明四邊形為平行四邊形,得出,可判斷出命題①的正誤;由為的中點,可知三棱錐的體積為三棱錐
的一半,并由平面平面,得出三棱錐體積的最大值,可判斷出命題②的正誤;取的中點,連接,由,結(jié)合得出平面,推出得出矛盾,可判斷出命題③的正誤.
如下圖所示:
對于命題①,取的中點,連接、,則,,
,由勾股定理得,
易知,且,、分別為、的中點,所以,,
四邊形為平行四邊形,,,
平面,平面,平面,命題①正確;
對于命題②,由為的中點,可知三棱錐的體積為三棱錐的一半,當平面平面時,三棱錐體積取最大值,
取的中點,則,且,
平面平面,平面平面,,
平面,平面,
的面積為,
所以,三棱錐的體積的最大值為,
則三棱錐的體積的最大值為,命題②正確;
對于命題③,,為的中點,所以,,
若,且,平面,
由于平面,,事實上,易得,,
,由勾股定理可得,這與矛盾,命題③錯誤.
故答案為:①②.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,P是曲線上的動點,M為線段OP的中點,設(shè)點M的軌跡為曲線.
(1)求的極坐標方程;
(2)若射線與曲線異于極點的交點為A,與曲線異于極點的交點為B,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對任意的,都有成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,,為的中點,平面且,為的中點.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | |||||||
頻數(shù) | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | ||||||
頻數(shù) | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:
(2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;
(3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點,,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個工廠在某年連續(xù)10個月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;
②通過建立的y關(guān)于x的回歸方程,估計某月產(chǎn)量為1.98萬件時,此時產(chǎn)品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
②參考公式:相關(guān)系數(shù),
回歸方程中斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】商品價格與商品需求量是經(jīng)濟學(xué)中的一種基本關(guān)系,某服裝公司需對新上市的一款服裝制定合理的價格,需要了解服裝的單價x(單位:元)與月銷量y(單位:件)和月利潤z(單位:元)的影響,對試銷10個月的價格和月銷售量()數(shù)據(jù)作了初步處理,得到如圖所示的散點圖及一些統(tǒng)計量的值.
x | y | |||||
61 | 0.018 | 372 | 2670 | 26 | 0.0004 |
表中.
(1)根據(jù)散點圖判斷,與哪一個適宜作為需求量y關(guān)于價格x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這批服裝的成本為每件10元,根據(jù)(1)的結(jié)果回答下列問題;
(i)預(yù)測當服裝價格時,月銷售量的預(yù)報值是多少?
(span>ii)當服裝價格x為何值時,月利潤的預(yù)報值最大?(參考數(shù)據(jù))
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com