【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:

零件的個數(shù)

2

3

4

5

加工的時間(小時)

2.5

3

4

4.5

Ⅰ)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;

Ⅱ)試對的關(guān)系進行相關(guān)性檢驗,具有線性相關(guān)關(guān)系,求出的回歸直線方程;

Ⅲ)試預(yù)測加工個零件需要多少時間?

參考數(shù)據(jù):.

附:);, ;

相關(guān)性檢驗的臨界值表

n-2

小概率

n-2

小概率

n-2

小概率

0.05

0.01

0.05

0.01

0.05

0.01

1

0.997

1

4

0.811

0.917

7

0.666

0.798

2

0.950

0.990

5

0.754

0.874

8

0.632

0.765

3

0.878

0.959

6

0.707

0.834

9

0.602

0.735

注:表中的n為數(shù)據(jù)的組數(shù)

【答案】(Ⅰ)答案見解析;(Ⅱ)答案見解析;(Ⅲ)

【解析】

()由題意繪制散點圖即可;

Ⅱ)由題意計算可得,據(jù)此可知回歸直線方程是有意義的,計算其回歸方程即可;

Ⅲ)利用回歸方程進行預(yù)測可得加工個零件需要小時.

Ⅰ)散點圖如圖所示

Ⅱ)由表中數(shù)據(jù)得:

,,,,;

,

從而有的把握認(rèn)為之間具有線性相關(guān)關(guān)系,因此求回歸直線方程是有意義的.

計算得:,,

所以.

Ⅲ)將代入回歸直線方程,得(小時)

預(yù)測加工個零件需要小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b為正實數(shù),函數(shù)f(x)=ax3+bx+2x在[0,1]上的最大值為4,則f(x)在[﹣1,0]上的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點.

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線相切于點.

(1)求實數(shù)的值;

(2)求以點為圓心,且與拋物線的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】商家生產(chǎn)一種產(chǎn)品,需要先進行市場調(diào)研,計劃對北京、上海、廣州三地進行市場調(diào)研待調(diào)研結(jié)束后決定生產(chǎn)的產(chǎn)品數(shù)量,下列四種方案中最可取的是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓觀賞游玩更便捷舒適,常州恐龍園推出了代步工具租用服務(wù).已知有腳踏自行車與電動自行車兩種車型,采用分段計費的方式租用.型車每分鐘收費元(不足分鐘的部分按分鐘計算),型車每分鐘收費元(不足分鐘的部分按分鐘計算),現(xiàn)有甲乙丙丁四人,分別相互獨立地到租車點租車騎行(各租一車一次),設(shè)甲乙丙丁不超過分鐘還車的概率分別為并且四個人每人租車都不會超過分鐘,甲乙丙均租用型車,丁租用型車.

(1)求甲乙丙丁四人所付的費用之和為25元的概率;

(2)求甲乙丙三人所付的費用之和等于丁所付的費用的概率;

(3)設(shè)甲乙丙丁四人所付費用之和為隨機變量,求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備使用年限x()和所支出的維修費用y(萬元)有如下統(tǒng)計資料:

i

1

2

3

4

5

=90,=112.3

xi

2

3

4

5

6

yi

2.2

3.8

5.5

6.5

7.0

xi yi

4.4

11.4

22.0

32.5

42.0

若由資料知,yx呈線性相關(guān)關(guān)系,試求:

(1)回歸直線方程;

(2)估計使用年限為10年時,維修費用約是多少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,則方程實數(shù)根的個數(shù)為 ( )

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={a1 , a2 , …,am}.若集合A1∪A2∪A3∪…∪An=A,則稱A1 , A2 , A3 , …,An為集合A的一種拆分,所有拆分的個數(shù)記為f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)關(guān)于n的表達式.

查看答案和解析>>

同步練習(xí)冊答案