19.已知數(shù)列{an}是等比數(shù)列,且a5-a3=${∫}_{-1}^{1}$(x2+sinx)dx,則a32-2a2a6+a3a7=( 。
A.$\frac{2}{3}$B.$\frac{4}{9}$C.1D.$\frac{8}{3}$

分析 先求出a5-a3的值,再由等比數(shù)列的性質(zhì)得a32-2a2a6+a3a7=a32-2a3a5+a52=(a3-a52,代入即可求值.

解答 解:等比數(shù)列{an}中,
a5-a3=${∫}_{-1}^{1}$(x2+sinx)dx=($\frac{1}{3}$x3-cosx)${|}_{-1}^{1}$=$\frac{2}{3}$,
所以a32-2a2a6+a3a7=${{a}_{3}}^{2}$-2a3•a5+${{a}_{5}}^{2}$=${{{(a}_{3}-a}_{5})}^{2}$=${(-\frac{2}{3})}^{2}$=$\frac{4}{9}$.
故選:B.

點評 本題主要考查了等比數(shù)列的性質(zhì)與定積分的簡單應用問題,是基礎試題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知點列An(an,bn)(n∈N*)均為函數(shù)y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數(shù)列{bn}中任意連續(xù)三項能構成三角形的三邊,則a的取值范圍為( 。
A.(0,$\frac{\sqrt{5}-1}{2}$)∪($\frac{\sqrt{5}+1}{2}$,+∞)B.($\frac{\sqrt{5}-1}{2}$,1)∪(1,$\frac{\sqrt{5}+1}{2}$)C.(0,$\frac{\sqrt{3}-1}{2}$)∪($\frac{\sqrt{3}+1}{2}$,+∞)D.($\frac{\sqrt{3}-1}{2}$,1)∪(1,$\frac{\sqrt{3}+1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.利用二項式定理求$\sum_{k=1}^{n}$(-1)k-1kC${\;}_{n}^{k}$•2k-1(n>2,n∈N*)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=sin(2x+φ)0<φ<$\frac{π}{2}$)的圖象的一個對稱中心為($\frac{3π}{8}$,0),則函數(shù)f(x)的單調(diào)遞減區(qū)間是( 。
A.[2kπ-$\frac{3π}{8}$,2kπ+$\frac{π}{8}$](k∈Z)B.[2kπ+$\frac{π}{8}$,2kπ+$\frac{5π}{8}$](k∈Z)
C.[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$](k∈Z)D.[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.將向量$\overrightarrow{n}$=(1,-2)按向量$\overrightarrow{a}$=(1,-1)平移得到向量$\overrightarrow{m}$,則$\overrightarrow{m}$的模|$\overrightarrow{m}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2,x≤0}\\{lnx,x>0}\end{array}\right.$,則f(-1)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,則m+n的取值范圍為( 。
A.(0,4)B.[0,4)C.(0,5]D.[0,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若復數(shù)z滿足3-i(z+1)=i,則z=( 。
A.-2+3iB.-2-3iC.2+3iD.2-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.要做一個圓錐形的漏斗,其母線長為40cm,要使其體積為最大,則高為$\frac{20\sqrt{6}}{3}$.

查看答案和解析>>

同步練習冊答案