分析:(1)將a=1代入求出函數(shù)的表達(dá)式,通過求導(dǎo)令導(dǎo)函數(shù)大于0,從而求出函數(shù)的單調(diào)遞增區(qū)間;
(2)問題轉(zhuǎn)化為a≤
對1≤x≤e恒成立.記h(x)=
,通過求導(dǎo)得到h(x)的單調(diào)性,從而求出a的范圍;
(3)先求出函數(shù)的導(dǎo)數(shù),通過討論當(dāng)0<x<ln2k時,當(dāng)ln2k<x<k時的情況,從而得到函數(shù)f(x)的最大值.
解答:
解:(1)a=1時,y=xlnx,y′=lnx+1,令y′>0,得lnx>-1,解得x>
.
所以函數(shù)y=xlnx的單調(diào)增區(qū)間為(
,+∞);
(2)由題意 alnx≥-x
2+(a+2)x對1≤x≤e恒成立,因為1≤x≤e時,x-lnx>0,
所以a≤
對1≤x≤e恒成立.記h(x)=
,
因為h′(x)=
(x-1)[x+2(1-lnx)] |
(x-lnx)2 |
≥0對1≤x≤e恒成立,當(dāng)且僅當(dāng)x=1時h′(x)=0,
所以h(x)在[1,e]上是增函數(shù),所以h(x)
min=h(1)=-1,因此a≤-1;
(3)∵f′(x)=e
x+(x-1)e
x-2kx=x(e
x-2k),由f′(x)=0解得x=ln2k或x=0(舍),
可證lnx≤x-1對任意x>0恒成立,∴l(xiāng)n2k≤2k-1.
∵k≤1,∴2k-1≤k,由于等號不能同時成立,∴l(xiāng)n2k<k,于是0<ln2k<k,
當(dāng)0<x<ln2k時,f′(x)<0,f(x)在(0,ln2k)上單調(diào)遞減,
當(dāng)ln2k<x<k時,f′(x)>0,f(x)在(ln2k,k)單調(diào)遞增,
∴f(x)
max=max{f(0),f(k)}=max{-1,(k-1)e
k-k
3},
記p(x)=(x-1)e
x-x
3+1,0≤x≤1,以下證明當(dāng)0≤x≤1時,p(x)≥0,
p′(x)=x(e
x-3x),記r(x)=e
x-3x,r′(x)=e
x-3<0對0<x<1恒成立,
∴r(x)在[0,1]單調(diào)遞減,r(0)=1>0,r(1)=-2<0,
∴?x
0∈(0,1)使
ex0-3x
0=0,
當(dāng)0<x<x
0時,p′(x)>0,p(x)在(0,x
0)上單調(diào)遞增,
當(dāng)x
0<x<1時,p′(x)<0,p(x)在(x
0,1)單調(diào)遞減,
又p(0)=p(1)=0,∴p(x)≥0對0<x≤1恒成立,
即(x-1)e
x-x
3≥-1對)<x≤1恒成立,
∴f(x)
max=(k-1)e
k-k
3.